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Abstract—This paper deals with non-linear coding-decoding 
strategies for Gaussian sensor networks that obey a global 
power constraint and are decentralized (each sensor’s decision 
is based solely on the variable it observes). The sensors and the 
sink act as the members of a team, i.e., they possess different 
information and they share a common goal, which consists in 
minimizing the expected distortion on the variables of interest. 
As the inherent power allocation, derived in “static” conditions 
(stationarity of the stochastic environment, fixed topology), 
reveals to be optimal [1], the main interest is to analyze its 
robustness to variable system conditions. To this aim, this 
paper goes deep inside the generalization capabilities of the 
proposed approach, by showing some interesting insights into 
the structure of the problem. The overall surprising outcome is 
that a quasi-static application of the approach reveals to be 
sufficient to maintain suboptimal performance even under a 
dynamic environment.  

Keywords—Gaussian sensor networks, neural control, power 
allocation, sensitivity analysis 

I. INTRODUCTION

HE DEPLOYMENT of sensor networks is often such that 
measurements acquired by the sensor nodes are conveyed 

toward a sink, where they need to be processed and 
analyzed. Recently, there has been a growing interest in 
understanding the peculiarities of wireless sensor networks 
from both an information theoretic and decision theoretic 
point of view, particularly when the measured quantities can 
be represented as Gaussian random variables (see, e.g., [1]-
[3]). In particular, when the measured variables are analog 
quantities, they can either be transmitted as such, or they can 
be quantized and transmitted according to a digital scheme. 
Given a distortion measure for the reconstruction of the 
variables at the sink, and the statistical characteristics of the 
communication channel and of the sources, it is not 
straightforward to determine whether joint source-channel 
coding (with analog transmission) can outperform the 
separation that is typical of digital communications [2]. In 
[1], we introduced decentralized decision models in the 
setting of team theory [4], based on the approximation of the 
optimal decision strategies by means of fixed-structure 
parametrized nonlinear functions, by applying the Extended 
Ritz Method (ERIM) [5]. The reason for seeking numerical 

approximations to the optimal coding/decoding strategies 
stems from the fact that a team optimization approach to 
these problems presents formidable analytical difficulties 
(originally pointed out in [6], even in a scalar source-channel 
model). 
More specifically, in [1] we used neural approximating 
functions to derive a non-uniform power distribution among 
the encoders at each sensor node. We show that, in the 
presence of correlated measurements from the same source 
representing a physical phenomenon, a large reduction in the 
overall transmission power can be obtained, at the expense 
of very little increase in distortion, with respect to linear 
encoding strategies. This is achieved by selecting a few 
“representative” sensors from the total available pool. The 
inherent optimization algorithm achieves optimal solutions 
under static conditions (stationarity of the stochastic 
environment, fixed topology). As such, there is the need of 
investigating: 
• how is the solution sensitive to changes in the 

topology and in the statistical environment? 
• how much computational and bandwidth effort is 

required? 
A simulation-based sensitivity analysis of the approach is 
outlined here with respect to several system parameters. The 
rest of the paper is organized as follows. We define the 
problem formally in the next section. Section III outlines our 
functional approximation approach. The sensitivity analysis is 
presented in Section IV and conclusions in Section V. 

II. PROBLEM STATEMENT 

We consider a number N of sensors deployed over a 
geographical area, each one observing a realization of some 
physical phenomenon described by a random variable (r.v.) S
(the source). We adopt the model of [3], which we describe 
in the following. We suppose the observations to take place 
at discrete time instants, but, since we are interested in real-
time, single-letter coding, we do not introduce the time index 
in the following for simplicity of notation. Successive source 
outputs are uncorrelated; however, there is spatial correlation 
between the source and the event observed by sensor i, 
represented by the r.v. iS . As a consequence, the r.v.’s iS
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and jS  are also mutually correlated. We indicate by ,s iρ
and ,i jρ  the correlation coefficients between S and iS , and 

between iS  and jS , respectively. Moreover, we suppose 

( )2~ 0,S σ , and that all the other variables 1,..., NS S  are 

jointly Gaussian, with 0 mean, the same variance 2σ , and 
covariance matrix SΣ . Measurements are corrupted by 
observation noise, so that sensor i observes a realization of 
the r.v. 

i i iX S N= +     (1) 

with ( )2~ 0, , i NN iσ ∀ . The measurements are encoded at 

each sensor according to some real-time coding strategy 
( )i i iZ f X=     (2) 

and the sink receives a channel output of the type 

1... , N i i icol Y Y Y Z W= = +Y   (3) 

with ( )2~ 0,  , i WW iσ ∀ . As in [3] the iW is ignored 

without loss of generality. The sink’s decoding strategy is 
also real-time and given byA 

( )Ŝ g= Y     (4) 

Functions ( ) , 1,...,if i N⋅ =  and ( )g ⋅  should be chosen to 
minimize the quadratic distortion measure 

( )2ˆD E S S= −    (5) 

under the overall power constraint 

{ }2

1

N

i
i

E Z
=

≤ Γ     (6) 

This problem, which will be referred to as Problem 1, 
assumes the presence of multiple receiving antennas at the 
sink (i.e., of an additive Gaussian noise MIMO channel), 
characterized by an identity matrix. 

. In sensor networks, the focus is usually on 
optimizing network lifetime; here, we find out the best trade-
off between energy consumption and distortion by activating 
specific nodes as long as they have enough power. After that, 
other nodes are selected under the same selection scheme. It 
is arguable that this approach should be better than rotating 
transmission responsibilities around many nodes (in the 
latter case, some energy is spent periodically for signaling). 
More details on this issue are however left open for future 
research. 
A static covariance matrix describes the mutual correlation 
among the input of the sensors. It depends on the distance 

between each pair of source-sensor and sensor-sensor; we 
refer to it as topological covariance matrix.  
In [3], the following coding strategies are adopted: 

2 2( ) i
i i i i

N

P
Z f X X

σ σ
= = ⋅

+
   (7) 

where iP  = Γ/N is the power limit of sensor i, and the sink 
decoding strategy is: 

2

2 22
1

1( ) ,  
N

i i
i i i i

i Ni

E X Z
g Y Y Y Z X

N E Z

σ
σ σ=

= = ⋅ = ⋅
+

 (8) 

We will refer to (7) and (8) here as linear strategies. By 
exploiting the fact that the source observations are 
correlated, the minimum number of sensors that need to be 
activated to achieve nearly optimal distortion should be 
sought, out of the total number of deployed sensors. An 
example may help understand. We consider both source S
and noise in (1) having standard normal distributions. Fig. 1 
represents a possible deployment of 30 sensors over a 50x50 
grid and some related candidate subsets of sensors to be 
turned on (obtained by a simulation campaign); each element 
of the topological covariance matrix, with indexes ,  i j , is 

given by 2σ ⋅ 10
ijd

e
− , according to a power exponential 

covariance model, ijd  being the distance between nodes 
i and j . A method for the determination of the optimal 
subset of sensors, different from the one we derive here, is 
provided in reference [3]; an advantage of the neural 
strategies we derive and apply in the following consists in 
the simultaneous optimal power assignment to the selected 
sensors. 

0

10

20

30

40

50

60

0 10 20 30 40 50 60

source

Figure 1. Example of deployment and candidate subsets to optimality. 

III. NONLINEAR PARAMETRIC APPROXIMATION OF THE 
OPTIMAL STRATEGIES

In this perspective, we reformulated Problem 1 in [1], by 
letting the coding and decoding strategies (2) and (4) depend 
on some non-linear approximation scheme. We remark again 
that the coding-decoding strategies are derived for a static 
topological covariance matrix. This assumption will be 
relaxed later. Introducing non-linear approximators in 
equations (2) and (4) means replacing them with: 

( , )
ii i i fZ f X= w     (9) 
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ˆ ( , )gS g= Y w    (10) 

where ( )f ⋅  and ( )g ⋅  are neural networks depending on the 
choice of the basis functions (e.g., sigmoidal) of each layer, 
and 

ifw  and gw  are vectors of parameters activating the 

basis functions. Let 
1
,...,

Nf fcol=fw w w . As already 

mentioned, the application of the entire vector 
1,..., Ncol Z Z=Y  in (10) helps highlight the performance 

gain induced by taking into account the topological structure 
(through explicit consideration of the cross-correlation in the 
strategies). Equations (9) and (10) are called neural coding
and decoding strategies. Replacing (2) and (4) in the cost (5) 
with the neural strategies leads to the following parametric 
optimization problem (Problem 2): 

( )
( )1

2

,

1 1

ˆ, arg  min ( , );  ( , ) ;

ˆ ( , ),..., ( , ) , ;  1,...,

g

N

o o
g g g

f N N f g

J J E S S

S g f X f X i N

= = −

= =

f
f f fw w

w w w w w w

w w w
(11) 

in order to find the optimal neural strategies 
( ) ( , )

i

o o
i i ff f⋅ = ⋅ w  and ( ) ( , )o o

gg g⋅ = ⋅ w  under the power 

constraint (6): { }2

1
,  1,..., : ( , )

i i

N

f i i f
i

i N E f X
=

= ≤ Γw w . 

Some technical details about the solution of Problem 2 can 
be found in reference [1]. Resorting from the team decision 
formulation of the functional optimization Problem 1 to the 
parametric approximation of Problem 2 is just an application 
of the methodology known as Extended Ritz [5]. Since a 
closed-form expression of the expected cost ( )J ⋅  in (9) is 
not easily available, ( )J ⋅  is substituted by its Montecarlo 

estimation ( )J ⋅ , ( )J ⋅  being an arithmetic average over a 
given number Ξ  of realizations of the random variables. 
More specifically, Ξ  different samples of iX  and 

iN ,  1,...,i N= , are generated on the basis of the topological 
covariance matrix and the distortion is computed under a 
given structure of the neural strategies (i.e., 

ifw  and gw  are 
fixed). In doing this, the cost is also “augmented”, by adding 
a penalty term, to ensure the satisfaction of the power 
constraint. The inherent numerical approximation is thus 
adaptive to general stochastic environments. The solution of 
(11) is obtained by applying an appropriate training chain of 
neural networks, which are placed inside each sensor and 
inside the sink. The training phase follows the regular back 
propagation algorithm for training neural network. In this 
perspective, the inherent computational effort is related to 
the off-line minimization of (11); on line, the trained neural 
networks can be applied “almost instantly”. Disregarding the 
inherent application of a localization algorithm, our approach 
therefore needs a small on-line computational effort. Other 
aspects related to the cost of a localization system are 
discussed in subsection IV.E. 

IV. PERFORMANCE ANALYSIS AND DISCUSSION

The analysis starts from the network of Fig. 1. The source S
and noise in (1) have normal distributions (with unitary 
variances). We suppose that for linear strategies each sensor 
cannot transmit with more than one unit of power. The 
constraint over the overall power consumption used in 
Problem 2 is therefore 30Γ = . A C++ simulator was 
developed to for the mentioned neural training algorithm to 
solve (11) and to compute the inherent distortion and power 
performance. The training phase took 18 minutes over an 
Intel processor@1.73GHz.  

A. Optimal power allocation 
The power allocation at the end of training is exactly Γ . 
Despite all sensors are active, the final distortion after 
training is only 4% over the one guaranteed by linear 
strategies (D=0.95 for linear strategies versus D=0.99 for 
neural ones). The resulting power allocation, depicted in Fig. 
2, states an important difference from linear strategies. The 
possible candidate subsets of sensors to be turned on are: {3, 
8, 14, 18, 19} or {8, 18, 19}, whose power level is above or 
just in proximity of the line corresponding to P=1.5 in Fig. 2 
(a discriminating power level for sensor activation).  
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Power allocation after training for topology of Fig.1

Figure 2. Power allocation after training (topology in Fig. 1). 

Distortion Power

Linear Strategies with N=30     0.952 30 

Linear Strategies {8,18,19}      1.151   3 

Neural Strategies {8,18,19}      0.999 3.72 

Linear Sensor - Neural Sink {8,18,19}      0.999    3

Linear Sensor - Optimal Linear Decoder {8,18,19}     1.015    3

Neural Sensor - Linear Sink {8,18,19}     1.653 3.73 

Linear Strategies {3,8,14,18,19}    1.1 5 

Neural Strategies {3,8,14,18,19}         0.999     5.79 

Linear Sensor - Neural Sink {3,8,14,18,19}         0.999 5 

Neural Sensor - Linear Sink {3,8,14,18,19}      1.52   5.8 

Table 1. Performance under different combinations of strategies. 

Table 1 reports the distortion and power consumption of 
different combinations of linear and neural strategies for the 
topology under investigation. The best subset reveals to be 
{8, 18, 19} (more marked circles in Fig. 3), because the 
other one only introduces a power waste. The most effective 
improvement is made by the introduction of the neural 
strategy at the sink, because using the linear strategies (for 
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the discovered subsets), together with neural decoding, 
guarantees the best performance. This is also corroborated 
by a comparison with the optimal linear decoder for a 
Gaussian channel (‘Linear Sensor - Optimal Linear Decoder 
{8,18,19}’ in Table 1), in place of the neural sink, applied to 
the subset {8, 18, 19}. Such a decoder, jointly with the linear 
coding strategies, explicitly exploits the topological 
covariance matrix. The neural sink outperforms the optimal 
linear decoder because the latter is in any case a consequence 
of the simple linear coding scheme, which oversimplifies the 
structure of the linear decoder itself. 
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Figure 3. Power allocation after training (topology in Fig. 1). 
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Figure 4. Activations using combinations of source and noise variances. 

B. Variable variances 
In order to validate the robustness of the neural power 
allocation, we consider the repetition of several training 
phases with respect to different combinations of source and 
noise variances. We consider again the topology of Fig. 1. 
Variances in play vary uniformly in the interval 5÷30, both 
for source and noise. A training phase is started from the 
beginning for each combination of variances. The qualitative 
result is depicted in Fig. 4, where a circle is marked around a 
sensor each time that sensor is chosen after training in virtue 
of its final power allocation (a simple comparison is made at 
the end of training as done for Fig. 2, on the basis of the 
automatic discriminating power level outlined above).  

Fig. 4 means that the discovered optimal choice for sensor 
activation (for most of the times: sensors {8, 18, 19}) is 
invariant to the source and noise statistical behaviors. The 
rationale of this effect can be explained as follows. It is 
arguable that the final result in the power allocation is a 
function of the topological covariance matrix; in other 
words, the power solution is influenced by the reciprocal 
correlation of each couple of sensors and source-sensor. In 

this view, changing the specific statistical behavior of source 
and noise does not lead to significant changes in the sensor 
activation scheme. The neural approach “captures” the 
reciprocal influence coming from the spatial correlation 
coefficients and discovers an optimal power allocation 
scheme, which is thus robust to possible changes in the 
statistical environment. This has been validated by 
considering several other topologies. On the other hand, a 
radical change in the topology itself is more critical. The 
inherent effects can be explained as follows. A new training 
phase is needed when a significant topology change takes 
place. For instance, this means that the results in Fig. 4 
significantly change if a topological permutation is applied 
over a “large” subsets of nodes. How the power allocation 
may be invariant to the “size” of such a permutation is an 
intriguing question as well. A method to match variable 
topologies jointly to the proposed neural scheme is outlined 
in the following. 

C. Different test sets  
Before that, one final remark is worth to be mentioned on the 
robustness of the neural scheme. It is related to the distortion 
obtained by the ‘Linear Sensor Neural Sink {8,18,19}’ 
technique (which is the best compromise between distortion 
and power consumption as to Table 1 above) in comparison 
with the ‘Linear Strategies {8,18,19}’, in the presence of 
variances different from the ones used during training. This 
means that we test the two techniques above with some ‘test 
sets’, which are different from the ones used for training. 
More specifically, these sets collect the sequences of 
samples ( 510 , in our case) produced by the source and noise 
probability distributions during a simulation, which 
calculates the distortion (and the power allocation) via a 
Montecarlo approximation. The training set belongs to given 
normal distributions and the test sets to different normal 
distributions with variable variances. We denote by dδ  the 
quadratic difference between the distortion obtained at the 
end of training (i.e., over the set extracted during the last 
training step) and the one obtained with a specific test set. 

Fig. 5 shows dδ  as a function of increasing source variance 

( 2σ ) and noise variance ( 2
Nσ ) used in the test sets 

( 2 2 1Nσ σ= = , over the training set). In the linear approach, 

the linear coding formula is used with 2 2 1Nσ σ= =  and an 

“ideal” distortion *d  is calculated using samples generated 
from normal distributions (coherently with the expected 

2 2 1Nσ σ= = ); dδ  is thus computed in the linear case as the 

quadratic difference between *d  and the distortion obtained 
using samples generated from Gaussian distributions with 
specific variances, namely, with the coding formula not 
updated with respect to the real variances used to generate 
the samples. From Fig. 5 it is quite evident that the neural 
approach outperforms the linear one as it limits the error 
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( dδ ) introduced by the application of test sets, whose 
samples are progressively different from the expected ones.   

[ ]2 1,30σ ∈

[ ]2 1,30Nσ ∈

dδ

Figure 5. Variable variances: distortion error dδ . 
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Figure 6. Activations using combinations of source and noise variances. 

D. Variable topologies 
Similar results have been obtained with other kinds of 
topologies and considering the presence of 100 sensors. Fig. 
6 shows the result of our neural analysis for other topologies 
of 30 nodes (the other parameter settings of the topology in 
Fig. 1 are left untouched).  
The neural strategies are capable to always discover the best 
subsets of sensors. To summarize, it is sufficient to discover 
the optimal subset and then, using some signaling scheme, 
activate the subset and turn off the other sensors; this action 
can be performed by some centralized unit, usually the sink 
node itself. Thus, one last and most crucial question 
naturally arises: how can we discover the optimal subset with 
time-varying topologies without restarting the training phase 
from scratch? In other words, the ultimate goal is to obtain a 
method capable to let the network learn the optimal subset of 
sensors to be turned on in dependence of the current 
topology. The method can be informally described as 
follows. First of all, a localization technique is needed for the 
sink to know the current geometry of the topology 
(information about the reciprocal distances among the nodes 
is sufficient). Then, the family of optimal power 
consumption curves (as in Fig. 9) can be learned off-line by 
the sink, by using again a neural approximation scheme. 
More specifically, since each curve in Fig. 6 derives from a 
specific topology (from a specific topological covariance 
matrix), a given function exists that maps the set composed 
of optimal power allocations with the set of corresponding 
topologies. The numerical approximation of this function, 

called optimal power mapping, can be easily obtained, 
because it consists of solving a problem easier than Problem 
1 or 2 (actually, it does not involve any random quantity). A 
similar approach has been successfully employed in [8] to 
approximate the solutions of a (computationally expensive) 
pricing optimization problem, as a function of variable 
network bottlenecks and traffic demands. Once the optimal 
power mapping is updated at the sink, together with the 
current distances among the nodes, the sink becomes capable 
to optimize the performance (as discussed for Table 1) with a 
small computational effort. The prices to pay are a given 
amount of bandwidth dedicated to turn on and off the sensors 
and the adoption of a localization system. More specifically, 
the sink periodically updates the actual position of the 
sensors and computes the optimal power mapping if a 
change is needed in the subset of active sensors. As said in 
subsection IV.B, this mainly depends on the reciprocal 
correlation of each couple of nodes. In turn, it thus depends 
on the reciprocal distance among the nodes. No changes are 
needed if the topology of the network remains fixed. The 
approach is reasonable if the topology changes slowly with 
time; in this viewpoint, some time is needed for the 
localization system to recognize the possible movements of 
the nodes. 

E. Localization  
In this perspective, some additional words are necessary 
concerning localization. Several techniques are available in 
the literature concerning localization over sensor networks. 
As explained in the previous subsection, what is needed here 
is making available at the sink the set of the relative 
distances among the nodes. This does not involve the 
adoption of complicated localization approaches by using, 
for example, anchors-based schemes, which are suited to 
derive absolute coordinates in place of relative ones (see, 
e.g., chapter 9 in [9]). However, the problem of how much 
the accuracy of the localization system influences the 
optimal power mapping is the critical issue. As such, we 
analyze the sensitivity of the optimal power mapping as a 
function of the position of the source. The rationale behind 
this choice relies on the fact that source localization is the 
most critical issue due to source mobility (which is actually 
more likely to occur than the mobility of the sensors). Thus, 
without entering any detail, we must note that updating the 
optimal power mapping frequently by the localization 
system might result in a bandwidth and computational 
burden, which would make the application of the proposed 
system quite impractical. This is however not the case, in 
virtue of the sensitivity properties of the optimal power 
mapping with respect to topological changes. An example is 
reported in Fig. 7, where the optimal subsets of sensors are 
highlighted as a function of different positions of the source. 
The source is indicated by the different squares in Fig. 7.  
Actually, the source moves around a cross centered in the 
middle of the sensing field (30 sensors are randomly 
deployed over a 50×50 square as in Fig. 1; source and noise 
have normal distributions). As done for Fig. 4, a circle is 
marked around a sensor each time that sensor is chosen after 

11



training in virtue of its final power allocation. Despite the 
different positions of the source, an optimal subset of sensors 
is derived by the neural analysis, which is thus robust to the 
actual position of the source. This is corroborated by Table 
2, where the quadratic difference, dδ , between *d  (the 
distortion obtained by the adoption of the optimal subsets 
obtained in correspondence of each new position of the 
source) and 'd  (the distortion achieved in all cases with the 
optimal subset obtained for the source placed in the center of 
the field) is outlined. The dδ  quantity is always very low 
(several orders of magnitude lower than the absolute 
distortion values, which are around 1.0), thus meaning that 
the optimal power mapping can be actually not aware of the 
exact location of the source, without incurring any distortion 
degradation. In other words, the optimal subset of sensors 
obtained when the source is in the center of the square 
reveals to be a suboptimal choice for all of the other cases 
when the source is located elsewhere. The term “suboptimal” 
here is related to the actual performance of our approach 
with an imperfect localization system that does not always 
achieve a perfect knowledge of the nodes’ position.

Figure 7. Activation with different source positions (squares in the 
picture). 

Position of the source Subsets after training
dδ

25-25 (center of the square)            6,18,20   0

25-0              12,18    4.00E-04

0-25           12,18,20    1.00E-04

25-50            6,12,20 4.84E-04 

50-25 12,18,20    4.72E-04 

12,5-25 12,18,20    4.00E-04 

25-12,5 12,18    1.44E-04 

25-37,5 6,12,18,20    1.00E-06 

37,5-25             12,18    1.44E-04 

Table 2. Different optimal subsets and source positions: distortion error dδ . 

The generalization of this result leads to the conclusion that a 
localization method with stringent time constraints is not 
mandatory. The price to pay for updating localization data 
over large time scales (thus, with respect to the bandwidth 

and computational constraints of the actual technology in 
play) is obtaining suboptimal distortion performance, which 
arises when the optimal power mapping is not updated with 
the actual distances among the nodes. This is however 
acceptable, in virtue of the provided power saving. We 
verified similar results to Fig. 7 and Table 2 (almost 
distortion-invariance of the optimal power mapping to 
topology changes), by changing the location of a subset of 
sensors without updating coherently the optimal power 
mapping, until the cardinality of that subset becomes higher 
than 32.5% of the total number of nodes. Any increase over 
that threshold in the number of sensors, (whose locations the 
optimal power mapping is not aware of) implies distortion 
deterioration over 42.6% of the optimal one (this was 
validated through an extensive simulation campaign with up 
to 100 nodes). That threshold can be considered in an 
empirical rule of thumb to define when updating the optimal 
power mapping with actual localization data would be 
necessary. In practice, as having a sudden dislocation of 
more than 32.5% of the nodes can be considered a rare event 
(almost impossible in several applications where the 
positions of the sensors are fixed), at least suboptimal 
performance is always guaranteed. 

V. CONCLUSIONS AND FUTURE WORK

The paper has analyzed the performance sensitivity of the 
non-linear optimization approach to Gaussian sensor 
networks of [1]. The overall outcome is that a quasi-static 
application of the approach is sufficient to maintain 
suboptimal performance under a dynamic environment.
Future work concerns exporting the analysis towards real 
scenarios beyond the Gaussian setting taken as a reference in 
this paper. 
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