
BalCon: A Distributed Elastic SDN Control via Efficient Switch Migration

Marco Cello∗, Yang Xu†, Anwar Walid‡, Gordon Wilfong‡, H. Jonathan Chao† and Mario Marchese§

∗ Nokia Bell Labs, Dublin, Ireland. Email: marco.cello@nokia-bell-labs.com
†NYU Tandon School of Engineering, New York, NY, USA. Email: yang@nyu.edu, chao@nyu.edu

‡Nokia Bell Labs, Murray Hill, NJ, USA. Email: anwar.walid@nokia-bell-labs.com, gordon.wilfong@nokia-bell-labs.com
§University of Genoa, Genoa, Italy. Email: mario.marchese@unige.it

Abstract—Scalability and reliability are among the main
concerns in large-scale Software Defined Networking (SDN)
application scenarios. A common approach is to use multiple
distributed controllers, each managing one static partition of
the network. In this paper, we show that dynamic mapping can
improve efficiency in managing traffic load variations. We then
propose BalCon (Balanced Controller): an algorithmic solution
designed to tackle and reduce the load imbalance among SDN
controllers through proper SDN switch migrations. Simulations
demonstrate that BalCon is lightweight from the computational
point of view and reduces the load imbalance among SDN
controllers (expressed as variance) by 40% by migrating only
a small number of switches. We also built a realistic prototype
of SDN controller, BalConController, based on the open-source
SDN framework RYU.

Keywords-software-defined networking, distributed con-
trollers, load balancing, multi-way partitioning

I. INTRODUCTION

As with other centralized systems, the use of a single

controller in large-scale Software Defined Networks (SDN)

brings up issues of poor scalability and reliability. As

the number of SDN switches managed by the controller

increases, the SDN controller may fail to process all the

requests coming from the switches. Moreover, because of

the single point of failure, in case of malfunction of the

SDN controller, all switches will become unavailable. Re-

cent works have proposed the use of multiple physically

distributed SDN controllers to improve performance scala-

bility and reliability, while preserving the simplicity of the

centralized system [18], [19], [25].

The problem of current multicontroller architectures is

that they rely on a statically configured mapping between

SDN switches and controllers that makes the control plane

unable to adapt to traffic variation. As suggested in [9],

real networks may exhibit huge variations in both temporal

dimensions (traffic varies at different time of the day or

even in a shorter time scale) and spatial dimensions (traffic

varies at different locations of the network) [6]. If the SDN

switch-controller mapping is static, a controller may become

overloaded while others are underutilized.

An overloaded controller will response to the switches

with an increased latency, deteriorating the Quality of Ser-

vice. In this scenario, as load imbalance occurs, it would be

desirable to have a dynamic mapping between the controllers

and the switches. An overloaded SDN controller should

have the ability to migrate a subset of its switches to other

controllers in order to reduce its congestion.

This paper provides theoretical, algorithmic and imple-

mentation contributions which are summarized below:

- we show that dynamic mapping between SDN switches

and controllers provides system elasticity and efficiency

during traffic load variations;

- we model the problem of switch migrations among

SDN controllers to achieve controller load balancing

as an optimization problem and we demonstrate that

the problem is NP-complete;

- since the optimal solution, for the aforementioned

switch migration problem, is impractical due to the pro-

hibitively high computational complexity, we propose

BalCon, a heuristic solution that is able to maintain

load balancing among SDN controllers, through SDN

switch migration, even under dynamic traffic load;

- we implement BalCon in Matlab, and the simulation re-

sults show that BalCon reduces load imbalance among

controllers (expressed as variance of the load) by 40%

and reduces the load of the congested controller by

19% with a relatively low number of SDN switches

migrated; we also compare BalCon with METIS a

graph partition heuristic that tries to minimize the sum

of weight cut among partitions. BalCon slightly under-

performs when compared to METIS, but requires fewer

switch migrations.

- we build a realistic prototype of SDN controller -

BalConController - based on RYU (a popular SDN con-

troller written in python [4]) that is extended with new

functions supported: multicontroller, switch migration

procedure and BalCon algorithm.

The rest of the paper is organized as follows: Section II

presents the motivations of our work. Section III presents

the system model. Section IV presents the design and the

details of BalCon. In Section V we evaluate BalCon. Section

VI presents a realistic prototype of a SDN controller. Section

VII reviews prior related works. Conclusions are in Section

VIII.

2017 IEEE International Conference on Cloud Engineering

978-1-5090-5817-4/17 $31.00 © 2017 IEEE

DOI 10.1109/IC2E.2017.33

40

II. MOTIVATIONS

An SDN network is composed of SDN switches and

a logically centralized SDN controller. Each SDN switch

processes and delivers packets according to rules stored in

its flow table (forwarding state), whereas the SDN controller

configures the forwarding state of each switch using a

standard protocol (e.g., OpenFlow [21]). The SDN controller

is also responsible for constructing the virtual topology (i.e.,

a graph) representing the physical topology. Virtual topology

is used by application modules that run on top of the SDN

controller to implement different control logics and network

functions (e.g., routing, traffic engineering, firewall). Traffic

rules, representing the forwarding state, are installed in SDN

switches when a new flow arrives1.

In order to overcome the scalability issues of a single cen-

tralized controller, several approaches have been proposed

in the literature. One of the most effective methods is the

use of distributed controllers. Existing distributed controller

solutions still suffer from the static mapping between SDN

switches and controllers, limiting the capability of dynamic

load adaptation.

Let’s briefly explain the reactive mode behaviour in SDN.

In Figure 1, a new flow f1 generated by host H1 arrives at

S1. S1 doesn’t have any rule associated with the flow and

generates a “packet-in”2 to C1 (i.e., the first green arrow).

C1 then computes the route (i.e., the line in red) and installs

the flow rules on SDN switches controlled by itself (i.e., the

blue arrows to S1 and S2). When the flow arrives at S5, the

switch doesn’t have any rule associated with the flow and,

consequently, sends a packet-in request to C2 that computes

the flow’s path and installs the flow rules on S5 and S6.

Suppose now that due to the traffic variations, a large

number of new flows arrive to the network and the current

traffic pattern is depicted in Figure 1. In particular:

- host H1 generates 30 new flows/second to H3, which

are routed through S1 → S3 → H3 (green arrows);

- host H2 generates 35 new flows/second to H6, which

are routed through S2 → S5 → S6 → H6 (red arrows);

- host H8 generates 20 new flows/second to H2, which

are routed through S8 → S7 → S4 → S2 → H2 (blue

arrows).

At this point, we want to ask what are the computational

burdens of SDN controllers C1 and C2 due to the instanti-

ation of the new flows. Suppose that the path computation

for a single flow requires α unit of load at the controller,

whereas the rules installation of a single flow in a single

1This method is known as “reactive” mode. A less-used and less-
effective method is “proactive” mode in which the controller installs rules
beforehand.

2When a packet does not match any of the existing rules inside an
SDN switch, the default policy is to send a copy of that packet up to
the controller. This “packet sent to the controller” message is called, in
OpenFlow-parlance, a packet-in [22].

Figure 1. SDN controller load imbalance scenario.

switch requires β units of load at the controller. At controller

C1:

- the green flows generate 30α units for path computation

and (30+30)β units for rules installation at S1 and S3;

- the red flows generate 35α units for path computation

and 35β units for rules installation at S2;

- the blue flows generate 20α units for path computation

and (20+20)β units for rules installation at S4 and S2.

At controller C2:

- the red flows generate 35α units for path computation

and (35 + 35)β units for rules installation at S5 and

S6;

- the blue flows generate 20α units for path computation

and (20+20)β units for rules installation at S8 and S7.

If we assume that the path computation load is larger than

the rule installation load, e.g., α = 1, β = 0.13, we obtain:

LC1
= (30 + 35 + 20)α+ (30 + 55 + 30 + 20)β =

= 98.5 units/s.

LC2
= (35 + 20)α+ (35 + 35 + 20 + 20)β =

= 66 units/s.

In the aforementioned example, the load between con-

trollers C1 and C2 is highly unbalanced if the mapping

between the controllers and switches is static. If we have

the capability to dynamically shrink or enlarge the SDN

domains or partitions through a proper switch migration,

we can obtain the new mapping between controllers and

switches in Figure 2.

We observe in Figures 2 that S2 and S4 are now part of

the second domain and controlled by C2. Since C1 does not

manage any longer S2 and S4, the computation burden due

to the red and blue flows is only managed by C2. The new

3Here we consider the path computation load, ten times larger than the
rules installation load. The estimation of those values are not the main focus
of this paper.

41

Figure 2. Controller load balance is improved after switch migrations.

controllers’ load are now:

LC1
= (30)α+ (30 + 30)β =

= 36 units/s.

LC2
= (35 + 20)α+ (55 + 20 + 35 + 35 + 20 + 20)β =

= 73.5 units/s.

Therefore, we obtained a significant reduction of the con-

troller load at C1 (63%) compared to a relatively small

increase of the controller load at C2 (11%).

As explained in [9], using real measurements of a produc-

tion datacenter the authors in [6] found that there are 1-2

orders of magnitude difference between peak and median

flow arrival rates at the switch: peak flow arrival rate can

be up to 300M/s with the median rate between 1.5M/s and

10M/s. Assuming that each controller can manage up to

2M/s as flow arrival rate, it requires only 1-5 controllers

to process the median load, but 150 for peak load. If we use

static mapping, each controller needs to have the capacity

to process the peak flow arrival (worst-case situation). If we

have a dynamic mapping, the capacity of each controller can

be lowered, since the peak of different partition (domain)

usually will not occur at the same time due to multiplexing

and sharing effect.

Recent work, [20], shows that current single controllers

can manage up to 20M/s as flow arrival rate.

Motivated by the above observations, we seek to answer

our key question: how to dynamically select and migrate

switches from the domain of one controller to another to

balance controller load? The quality of this answer will

largely depend on the complexity and the cost of the switch

migration process.

We first develop optimal controller load balancing (CLB)

problem in SDN multicontroller scenarios, and prove, how-

ever, that it is NP-Complete problem. We then model the

CLB problem as a graph partitioning problem and develop

BalCon: an effective algorithm for load adaptation among

SDN controllers through SDN switch migrations.

III. MODELING OF CONTROLLER LOAD BALANCING

PROBLEM

A. System Model

The objective of this section is to find an appropriate

model that takes into account the flow arrival dynamics at

each SDN switch and relate them to the computational load

at each SDN controller. We then formalize the CLB problem

into an optimization one.

An SDN scenario is composed of a set S of SDN switches,

Si ∈ S , managed by a set C of SDN controllers, Cm ∈ C.

In accordance with prior works, we cannot assume pre-

dictable traffic or well-known traffic patterns among the

SDN switches, but we can monitor the traffic load during

runtime. Therefore, we indicate with fo,Si
the current arrival

rate of new flows at SDN switch Si from outside the SDN

network, with fSi,o the current arrival rate of new flows that

leave the SDN network from switch Si, whereas with fSi,Sj

we indicate the current arrival rate of new flows traversing

the link between the two connected SDN switches Si and

Sj . In other words, fSi,Sj
represents the current arrival rate

of new flows at the SDN switch Sj coming from SDN

switch Si. Referring to Figure 1 we have: fo,S1
= 30,

fo,S2
= 35, fo,S8

= 20, fS3,o = 30, fS2,o = 20, fS6,o = 35,

fS1,S3
= 30, fS2,S5

= 35, fS4,S2
= 20, fS5,S6

= 35,

fS7,S4
= 20, fS8,S7

= 20.

As shown before, the load LCm
at controller Cm is

composed of three main components: the path computation

load of new flows arriving from outside the SDN network

(e.g., green arrow H1 → S1 and red arrow H2 → S2 in

Figure 1); the path computation load of the flows arriving

from another SDN domains (e.g., blue arrow S7 → S4 in

Figure 1); the rule installation load at each switch controlled

by Cm for all flows traversing the domain controlled by Cm.

Definition 3.1: - Path Computation Load for External

Flows - When a batch of flows arrive at Si from outside the

network with a rate of fo,Si
, they generate a computational

load due to the path computation at the SDN controller of

Si equal to:

K(fo,Si
) (1)

Definition 3.2: - Path Computation Load of flows

from Other SDN Domains - When a batch of flows arrive at

Si from Sj , a switch controlled by another SDN controller,

with a rate of fSj ,Si
, they generate a computational load due

to the path computation at the SDN controller of Si equal

to:

K(fSj ,Si
) (2)

The computational load at SDN controller necessary to

perform path computation is dependent on the arrival rate of

flows through a function K. The definition of the function

K is not the objective of this work.

Definition 3.3: - Rules Installation Load - The computa-

tional load at the controller due to rules installation in switch

42

Si is equal to: ∑
Sj∈S

G(fSi,Sj
) + G(fSi,o) (3)

Equation 3 expresses the amount of flows that are traversing

Si going to other switches or out of the SDN network.

Function G maps the the flow arrival rate at Si to the

computational load at the SDN controller needed for rules

installation.

Definition 3.4: The set of SDN switches controlled by

SDN controller Cm is denoted by Pm.

The set S is then partitioned in a |C|-partition, with Pm ⊂ S ,

Pm ∩ Pn = ∅, n �= m.

Definition 3.5: The overall computational load at SDN

Controller Cm (LCm
) is computed as:

LCm
�

∑
Si∈Pm

K(fo,Si
) +

∑
Sj /∈Pm

Si∈Pm

K(fSj ,Si
)+

+
∑

Si∈Pm

Sj∈S

G(fSi,Sj
) +

∑
Si∈Pm

G(fSi,o)
(4)

Overloading the SDN controller reduces its responsive-

ness and causes a performance degradation since the flows

will experience an unexpected latency.

Definition 3.6: An SDN controller is overloaded or con-

gested when its overall computational load is:

LCm
> L (5)

where L that indicates the maximum computational load

tolerated at each SDN controller.

When congestion occurs a migration procedure is needed

to reduce overload. In particular, starting from a partition

(P1, . . . ,P|C|) for which at least one controller, Cm, the

condition LCm
> L holds, we need to find a new partition

(P ′
1, . . .P

′
|C|) such that the SDN controller load LCm

≤
L, Cm ∈ C.

The controller load balancing (CLB) problem can be

expressed as a mathematical optimization problem which

we call the Optimal CLB (OCLB) problem, and is defined

as follows:

Definition 3.7: - OCLB Problem.

min
P1,...,P|C|

max
Cm∈C

LCm
; (6)

subject to

Pm ∩ Pm = ∅, m �= n, ;⋃
Pm = S.

B. CLB as Graph Partitioning Problem

The CLB problem can be expressed as a partitioning

problem on a graph and the computation of LCm
can be

induced directly on the graph.

In particular, we represent the SDN network as a directed

edge-weighted and vertex-weighted graph G(S, E) in which

SDN switches are the vertices with weights l(Si), Si ∈ S
and edges E = {(Si, Sj) : Si, Sj ∈ S, l(Si, Sj) > 0}, are

the connections among SDN switches. l(Si, Sj) is the edge

weights of (Si, Sj). That is

l(Si) = K(fo,Si
) +

∑
Sj∈S

G(fSi,Sj
) + G(fSi,o); (7)

l(Sj , Si) = K(fSi,Si
) . (8)

The overall load at Cm, denoted by LCm
, is then the sum

of the weights of the vertices belonging to its partition plus

the sum of weights of the edges directed to the partition of

Cm. Specifically:

LCm
=

∑
Si∈Pm

l(Si) +
∑

Sj /∈Pm

Si∈Pm

l(Sj , Si). (9)

Note that Equation 9 is just another expression for Equa-

tion 4.

Figure 3 is a representation of Figure 1 as a graph par-

titioning problem. For example, the vertex weight of S1

represent the computational load “brought” by S1 to C1. In

particular l(S1) = 33, which is the sum of K(fo,S1
) = 30

(30 flows/s) and the rule installation for the flows going

to S3 G(fS1,S3
) = 34.

Figure 3. The SDN network scenario of Figure 1 as graph partitioning
problem.

Refering to the same figure we get:

LC1
= l(S1) + l(S2) + l(S3) + l(S4) + l(S7, S4) =

= 33 + 40.5 + 3 + 2 + 20 = 98.5 units/s.

LC2
= l(S5) + l(S6) + l(S7) + l(S8) + l(S2, S5) =

= 3.5 + 3.5 + 2 + 22 + 35 = 66 units/s.

C. Sketch of NP-completeness Proof

In what follows we have a network H = (W,A) where the

nodes in W represent routers and arcs in A are symmetric

(i.e., (u, v) ∈ A if and only if (v, u) ∈ A. A flow f in

a network H is a directed acyclic path in H . Consider

a partition of W into regions R1, R2, . . . , Rc. For a flow

4For simplicity here we consider the functions K and G as linear
functions of the rate: K(rate) = rate, G(rate) = rate/10.

43

f we cut f into maximal sections contained in a region

f1, f2, . . . , ft. That is, fi and fi+1 are contained regions Ra

and Rb respectively where Ra �= Rb. We then say that f
starts at the first router (node) in each fi.

Given a set of flows F , a bound B on the number of

flows that can start at a router and a bound K on the total

number of flows starting at routers within any given region,

we say that a partition of W is valid if no router or controller

bound is exceeded. We call the problem of deciding if a valid

partioning exists, the VALID PARTITIONING problem.

Theorem 3.8: The VALID PARTITIONING problem is NP-

complete.

Proof: Consider the MINIMUM CUT INTO EQUAL-

SIZED SUBSETS problem where one is given an unweighted

graph G = (V,E), two vertices s and t, a bound d and the

question is whether there exists a partitioning of V into

two equal parts Vs and Vt where s ∈ Vs, t ∈ Vt so that

at most d edges cross between Vt and Vs. The MINIMUM

CUT INTO EQUAL-SIZED SUBSETS problem is known to

be NP-complete [12]. We show that VALID PARTITIONING

is NP-hard using a reduction from MINIMUM CUT INTO

EQUAL-SIZED SUBSETS.

Details of reduction are omitted due to space limitations.

The complete proof can be found here: NP-completeness

Proof5.

IV. BALCON ALGORITHM

An optimal SDN switch migration is impractical due to

its computational complexity (i.e., OCLB problem is NP-

complete) and could lead to undesirable excessive switch

migrations. A more practical approach should involve incre-

mental adjustment of the switch partitions, i.e., only a small

number of SDN switches are migrated.

In this section, we propose Balanced Controllers (BalCon),

an algorithmic solution designed to tackle and reduce the

load imbalance among SDN controllers through a proper

SDN switch migration. The key observation behind BalCon

is that an effective switch migration can be based on analysis

of the communication patterns of the SDN switches. The

switch migration should be at the granularity of clusters:

switches with strong connections6 should always be assigned

to the same controller.

Analysis of the traffic pattern among SDN switches helps

identify clusters of connected switches. Migration at the

granularity of the cluster (i.e., cluster migration) can reduce

the work load at the controllers, as compared to single

switch migration.

BalCon is an heuristic algorithm which operates during

the network runtime and is able to detect and solve

5https://marcocello.github.io/pubs/IC2E2017-BalCon-Proof.pdf
6We consider the relative density of the cluster [24].

congestion at the SDN controllers through proper SDN

switch migrations. BalCon can be implemented as a

northbound application of the SDN controller (more details

are available in Section VI). BalCon consists of three

phases, as summarized below:

1. Monitoring and congestion detection: During the network

operation, BalCon continuously monitors the congestion

level at each SDN controller. An SDN controller, Cm, is

considered congested when LCm
reaches a predetermined

threshold. BalCon then computes a list of SDN switches

that may be migrated. The list is ordered by a priority

computed using a pre-determined metric. For example,

the SDN switches that are observing a rapid increase of

new flows could get high priority since they could rapidly

overload the SDN controller with packet-ins.

2. Clustering and migration evaluation: Starting from the

SDN switches in the priority list, BalCon analyzes the

traffic pattern among SDN switches to find clusters of

heavily connected switches (discussed below).

3. Cluster migration: When the best cluster is found and

the migration is evaluated, the SDN switches belonging to

the cluster are migrated to the new SDN controller.

The algorithm we propose is substantially based on the

repetition of three functions: IncreaseCluster in which the

cluster is expanded; ComputeMigrationAlternatives in

which the migrations on different SDN controllers of the

current cluster are evaluated (producing the ”migration al-

ternatives” or simply called ”alternatives” in the following);

Evaluate-BestMigrationAlternative in which given a

list of alternatives, the best alternative (based on some crite-

ria described in the following) is computed. The algorithm

is shown in Algorithm 1.

Algorithm 1: BalCon

Input: Edge- and node-weighted graphs G(S, E), congested SDN
controller Cm;

1 Pm: set of SDN switches controlled by the congested SDN
controller Cm;

2 A = ComputeStartingSwitchesList(Cm)
3 foreach Si ∈ A do
4 T = {Si};
5 alternatives =

alternatives ∪ ComputeMigrationAlternatives(T);
6 while 1 do
7 newT = IncreaseCluster(T);
8 if size(T) > mcs‖ newT = T then
9 break;

10 T = newT ;
11 alternatives =

alternatives ∪ComputeMigrationAlternatives(T);

12 [T 0,Target SDN controllero] ←
EvaluateMigrationAlternatives(alternatives);

From the set Pm (SDN switches controlled by the con-

gested SDN controller Cm), the algorithm extracts a subset

44

list A (StartingSwitch List) that contains the starting nodes

used for the cluster construction (line 2). A could be

computed, for example, by looking for the SDN switches

that have a significant increase in flow arrival rate. The

first SDN switch belonging to A is selected and inserted

in the empty cluster T (Line 4). The migration alterna-

tives of the SDN switches belonging to T are computed

through ComputeMigrationAlternatives. The algorithm,

subsequently, executes a while loop in which the cluster

is continuously enlarged with the IncreaseCluster func-

tion and evaluated with the function ComputeMigration-

Alternatives. The algorithm halts when one of the two

stop conditions are met: the cluster reaches a predetermined

size mcs (max cluster size), i.e., size(T) > mcs, or the

increased cluster is equal to the old one (newT = T). The

next switch in A is then selected and inserted in an empty

cluster T . When the mssls (max starting switch list size)

is reached, all the migration alternatives are evaluated using

the AlternativeEvaluation function. The best alternative

composed by T 0 (the cluster) and the target SDN controller

(the controller that will receive T 0) are chosen and the

migration can occur. In the following we will give a detailed

explanation of the aforementioned functions.

1 function ComputeMigrationAlternatives (T);
2 foreach SDN controller Ci do

3 “virtual“ migrate cluster T in SDN controller Ci;
4 if LCi

< L then
5 compute LCn

, ∀Cn ∈ C;
6 compute migrationSize for this new configuration;
7 save them in lastAlternatives

8 return lastAlternatives

ComputeMigrationAlternatives “virtual” migrates

cluster T in different SDN controller destinations. For

each controller, it computes the controller load and the

migration size. Table I shows a possible output of

ComputeMigration-Alternatives routine in a scenario

with 60 switches and 5 controllers, when T = {S1,S2,S56}.

For SDN controller Ci, the function migrates T to SDN

controller Ci (Line 3), computing the new computational

load at each SDN controller (Line 5) and the migration cost

migrationSize (Line 6) defined as the number of switches

that need to be migrated.

1 function IncreaseCluster(T);

2 neighborsT = ComputeNeighborsOfCluster(T);
3 foreach Si ∈ neighborsT do

4 newT = T ∪ Si;
5 savedDensities = [savedDensities; Si, Density(newT)];

6 So
i
= argmaxsavedDensitiesDensity(newT) ;

7 return T ∪ So
i

;

Starting from the cluster T , the function constructs the

T Target SDN [LC1
, . . . , LC|C|

] migration

Controller size

{S1,S2,S56} C1 [90, 9, 6, 10, 8] 0
{S1,S2,S56} C2 [86, 51, 6, 10, 8] 3
{S1,S2,S56} C3 [70, 9, 48, 10, 8] 3
{S1,S2,S56} C4 [80, 9, 6, 51, 8] 3
{S1,S2,S56} C5 [96, 9, 6, 10, 50] 3

Table I
EXAMPLE OF alternatives CARRIED OUT BY BALCON ALGORITHM IN

A TOPOLOGY WITH 50 SWITCHES, 5 CONTROLLERS AND A CLUSTER

T = {S1 ,S2 ,S56}.

set neighborsT composed of all SDN switches that are

neighbors to T . An SDN switch Si is a neighbor of T
if ∃Sj ∈ T : l(Si, Sj) �= 0, l(Sj , Si) �= 0. The function

then selects the neighbor that maximizes the relative density

Density [24] of the newly created cluster.

Definition 4.1: Relative density is the ratio of the internal

degree to the number of incident edges, i.e.,

Density(T) =

∑
Si,Sj∈T
Si �=Sj

l(Si, Sj)

∑
Si,Sj∈T
Si �=Sj

l(Si, Sj) +
∑
Si∈T

Sj∈S\T

l(Si, Sj)
(10)

Given the alternatives vector,

EvaluateMigrationAlternatives chooses the best

alternative ([T o,Target SDN controllero]) among them, that

optimizes one of the following Evaluation-Method:

minMax - Minimize the maximum controllers load:

argmin
alternatives

(
max [LC1

, . . . , LC|C|
]
)

(11)

minSum - Minimize the sum of controllers load:

argmin
alternatives

∑
Cm∈C

LCm
(12)

integral - Maximize the distance from the controllers load

configuration in case of congestion:

argmax
alternatives

D([LC1
, . . . , LC|C|

], [L̂C1
, . . . , L̂C|C|

]) (13)

with [L̂C1
, . . . , L̂C|C|

] the vector of controllers load when

congestion appears just before BalCon, and function D(u, v)
defined as follow:

D(u, v) =
∑
i

∫ vi

ui

x2dx (14)

45

V. PERFORMANCE EVALUATION

BalCon has been implemented using Matlab R2015a 64bit

for Linux. The simulations has been carried out using a PC

equipped with an Intel Core i5-3340@3.10 GHz with 8 GB

of 1600 MHz DDR3 RAM and an OS Linux Mint 17.

A. Dynamic Scenario - Effectiveness of BalCon

In Dynamic Scenario simulations set we fix BalCon

parameters (mcs, mssls and EvaluationMethod) and we

evolve the network over time in order to show the effec-

tiveness of BalCon during a (simulated) runtime network

operation. We simulated 4 different network topologies

shown in Table II, varying the degree in which edge-

core (dEC) and core-core (dCC) nodes are connected. In

particular, dEC represents the number of connections that

each edge node has towards core nodes, while each dCC
represents the number of connections each core node has

towards other core nodes. To perform Dynamic Scenario

simulations we implemented a routine that generates flow

arrivals and departures at edge nodes following a Poisson

process. For each topology presented, we run 200 different

simulations with different seeds of the Poisson process

generator. Each run simulates 2000s of network runtime

operation. BalCon has been setup using a starting switch

list size mssls = 20 and a maximum cluster size mcs = 20
using Equation 13 (Integral) as EvaluationMethod in

EvaluateMigrationAlternatives.

#
Name edge core dEC dCC controllers

Topology1 50 40 2 full mesh 5
Topology2 50 40 5 full mesh 5

Topology3 50 40 2 # core nodes
5

5

Topology4 50 40 5 # core nodes
5

5

Table II
TOPOLOGIES SIMULATED FOR PERFORMANCE ANALYSIS.

Figure 4 shows a topology composed of 9 edge nodes (in

blue), 5 core nodes (in gray), and 3 controllers. dEC = 1
indicates that each edge node is connected to a single core

node, while dCC = full mesh since the core nodes form a

full mesh network.

Figure 5 shows the computational load of all the 5

controllers (0 means no congestion at all, while 100 indicates

overload) during the simulation of Topology1.The green line

represents the congestion level of controller C5. As soon as

it reaches the threshold L = 90, BalCon is triggered using

the starting switch list size swlsm = 20 and the maximum

cluster size msc = 20. The different routines of BalCon are

indicated with black dotted ellipse.

BalCon performs well: the maximum computational load

during the 4 BalCon instances is reduced on average by

Figure 4. Example of network topology with 9 edge nodes (in blue), 5
core nodes (in gray), 3 controllers, dEC = 1 and dCC = full mesh.

O
v
er

al
l

C
o

m
p

u
ta

ti
o

n
al

 L
o

ad

Time [s]

20

40

60

80

100

90

1300 1750

1° BalCon routine Other BalCon routines

1350 1400 1450 1500 1550 1600 1650 1700

Figure 5. Computational load of 5 controllers during Dynamic Scenario
and the effect of BalCon algorithm in simulations with Topology1 and
seed = 1. The blue line is LC1

, the red line is LC2
, the yellow line is

LC3
, the violet line is LC4

and the green line is LC5
.

15%, with an average of 2.4 switches migrated in each

routine. The computational time is 0.69s. The variance of

the computational load is reduced at each routine on average

by 66%. In this case BalCon can effectively balance the

computational load and solve the overloading problem at

the controller with few switch migrations.

Figure 6 clearly shows the performance advantage of

BalCon algorithm compared to the static assignment of the

switches to the controller using the same traffic pattern.

Figure 6(a) shows the computational load of the 5 controllers

without load balancing, i.e., static assignment, while Figure

6(b) is the case in which BalCon is implemented. As we

observe, BalCon maintains the controllers’ load below the

threshold during runtime, whereas in the static assignment

case the congestion load exceeds the threshold (90) by 50%.

Other settings with different topologies in Table II show

similar results as Figure 6.

46

0 200 400 600 800 1000 1200 1400 1600 1800 2000
0

50

100

150

0 200 400 600 800 1000 1200 1400 1600 1800 2000
0

50

100

150

���

���

Figure 6. Comparison of the computational load between a static
assignement (a) and BalCon (b) in Dynamic scenario with Topology3.

B. Static Scenario

In Static Scenario simulations set we fix the time instant

(when congestion occurs) and we vary BalCon parameters

in order to show how the parameters affect BalCon’s perfor-

mance. We varied the starting switch list size (mssls), the

maximum cluster size (mcs) and the method for Evaluate-

MigrationAlternatives function. We simulated 4 different

network topologies shown in Table II. For each topology we

synthetically generated 500 different “congestion traffic con-

figurations” in which one controllers is congested. For each

congestion traffic configuration we run several instances

of BalCon algorithm varying mssls = {3, 5, 10, 20} and

mcs = {3, 5, 10, 20}.

For each simulation, we evaluated different performance

indicators. Let LC = [LC1
, . . .] the vector denote the

controllers’ load, Lcon
C

the controllers’ load when congestion

appears just before the application of BalCon and L
bal
C

the

loads after BalCon routine.

Definition 5.1: Let the congested controller

C∗
m = argmax L

con
C

and the congested controller load

L
con
C

(C∗
m). We define the Reduction Congested Controller

Load (%) as:

L
bal
C

(C∗
m)−L

con
C

(C∗
m)

L
con
C

(C∗
m)

· 100 . (15)

Definition 5.2: Reduction Max Controller Load (%)

maxLbal
C

−maxLcon
C

maxLcon
C

· 100 (16)

Definition 5.3: Reduction Sum Controller Load (%)∑
L

bal
C

−
∑

L
con
C∑

L
con
C

· 100 (17)

Definition 5.4: Reduction Variance Load (%)

V ar(Lbal
C

)− V ar(Lcon
C

)

V ar(Lcon
C

)
· 100 (18)

Figure 7 shows the performance of different versions

of BalCon by varying mssls and mcs using Topology1
and minMax as EvaluationMethod. In the first instance,

we consider the black bars, representing the choice of

parameters [mssls,mcs] = [3, 3]. We observe a reduction

of the congested controller load by 12.55% (Figure 7(a)), a

reduction of the max controllers load by 11.32% (Figure

7(b)), an almost negligible reduction of the sum of the

controllers load (Figure 7(c)), a 47.10% of the reduction of

the variance (Figure 7(d)). We also observe that we obtain

an average migration size of 1.37 switches (Figure 7(e))

and an average BalCon computation time of 0.13s (Figure

7(f)). Considering now the other bars, we note that the

performance is highly dependent on the parameters. If we

have a larger mssls and mcs, we can increase the search

space of the possible solutions of BalCon. This translates

to better performance. In fact, if we consider the case

[mssls,mcs] = [20, 20], we observe a significant increase

of the performance indicators described before.

With large values of mssls and mcs, we can observe a

small increase of the migration size (from 1.37 to 2.05).

BalCon is quite fast, in fact the computation time is lower

than 1s (0.84s) with higher values of mssls, and mcs. As

we observe, BalCon is highly efficient with low computation

time and few switch migrations needed.

[mssls,mcs]

(a)

[3,3] [5,5] [10,10] [20,20]R
e
d
u
c
ti
o
n
 C

o
n
g
e
s
te

d

C
o
n
tr

o
lle

r
L
o
a
d
 (

%
)

0

10

20

1
2
.5

5

1
5
.0

9

1
5
.7

8

1
6
.5

0

[mssls,mcs]

(b)

[3,3] [5,5] [10,10] [20,20]

R
e
d
u
c
ti
o
n
 M

a
x

C
o
n
tr

o
lle

r
L
o
a
d
 (

%
)

0

10

20

1
1
.3

2

1
3
.7

5

1
4
.3

4

1
5
.4

7

[mssls,mcs]

(c)

[3,3] [5,5] [10,10] [20,20]

R
e
d
u
c
ti
o
n
 S

u
m

C
o
n
tr

o
lle

r
L
o
a
d
 (

%
)

0

2

4

1
.3

1 2
.1

6

2
.1

6 2
.9

7

[mssls,mcs]

(d)

[3,3] [5,5] [10,10] [20,20]

R
e
d
u
c
ti
o
n

V
a
ri
a
n
c
e
 L

o
a
d
 (

%
)

0

20

40

60

80

3
9
.8

3

4
8
.0

0

5
1
.0

8

5
0
.5

9

[mssls,mcs]

(e)

[3,3] [5,5] [10,10] [20,20]

M
ig

ra
ti
o
n
 S

iz
e

(s
w

it
c
h
e
s
 n

o
.)

0

1

2

3

1
.3

7

1
.6

6

1
.9

0

2
.0

5

[mssls,mcs]

(f)

[3,3] [5,5] [10,10] [20,20]

C
o
m

p
u
ta

ti
o
n

T
im

e
 (

s
)

0

0.5

1

0
.1

3

0
.2

4 0
.4

6

0
.8

4

Figure 7. Performance of different version of BalCon varying mssls and
mcs using Topology1.

47

C. Static Scenario - N-Iterations vs METIS

In the last set of simulations, our aim is to compare

the performance of BalCon with the solution carried out

by METIS [17]. METIS is a graph partition heuristic that

tries to minimize the sum of weight cut among partitions.

Given the good results of METIS in terms of reduction of the

sum of controller load, we use it as performance benchmark.

Using Topology1, we synthetically generated 500 different

congestion traffic configurations in which we brought one

of the controllers to the congestion.

For each congestion traffic configuration we run several in-

stances of BalCon with parameters [mssls,mcs] = [20, 20]
and minSum varying the number of iterations of itself.

In more detail for each traffic configuration we evaluated

the performance of BalCon with 1 iteration (1-it), 2 iter-

ations (2-it), 5 iterations (5-it) and “loop”. With 1-it, for

example, BalCon will be executed only 1 time to solve

the congestion event. 1-it is the configuration used so far.

With 5-it, BalCon will be executed 5 times consecutively

to solve the congestion event. With “loop”, BalCon will be

continually executed until there is no more reduction of the

most congested controller’s load between two consecutive

iterations. We compare different versions of Balcon with

METIS-Multilevel k-way partitioning-ufactor=100.

Figure 8 shows the performance of different iterations of

BalCon compared to METIS with Topology1.

Evaluation Methods

(a)

1-it 2-it 5-it loop Metis

R
e
d
u
c
ti
o
n
 S

u
m

C
o
n
tr

o
lle

r
L
o
a
d
 (

%
)

0

20

40

60

5
.8

9 1
0
.7

3 2
0
.7

5

3
3
.0

9

3
7
.9

4

Evaluation Methods

(b)

1-it 2-it 5-it loop Metis

M
ig

ra
ti
o
n
 S

iz
e

(s
w

it
c
h
e
s
 n

o
.)

0

20

40

60

80

100

2
.5

0

4
.5

5

1
0
.4

7 2
2
.0

0

5
8
.9

2

Evaluation Methods

(c)

1-it 2-it 5-it loop Metis

C
o
m

p
u
ta

ti
o
n

T
im

e
 (

s
)

0

5

10

15

0
.8

0

1
.7

1

4
.6

1

1
1
.5

1

0
.3

7

Figure 8. Performance of different iterations of BalCon compared to
METIS with Topology1.

We can observe that BalCon loop can obtain a very

good reduction of the sum of controllers load of 33.09%
compared to 37.94% of METIS. METIS obtains a migration

size of 58.92 switches since is completely unaware of the

previous switch-controller configuration. On the other hand,

BalCon loop obtains a migration size of 22 switches. The

computational time is higher in BalCon (11.51 s).

[10] shows that the migration time of a single switch can

take 100ms when the controller is receiving 10000 packet-

in/s. Having a method that minimize the migration size, as

our BalCon permits to avoid an high messaging exchange

among SDN controllers that could eventually reduce the

performances.

VI. DESIGN AND REAL IMPLEMENTATION:

BALCONCONTROLLER

In this section, we present further details on how we

designed and implemented BalConController by modifying

and adding components to RYU controller [4].

A. Design

BalConController architecture can be implemented

through a NorthBound application of the SDN controller and

run in a distributed fashion: only the congested controller

will activate the BalCon routine based on an updated map

of the network. In particular Figure 9 shows the modules

involved in the BalConController and their relationship with

existing modules in a SDN controller.

Figure 9. BalConController Architecture.

Graph Network Manager is the entity that gathers both

flow arrival statistics from Flow Stats Manager entity and

routing decisions from Routing Manager entity in order to

construct and update the local version of the graph rep-

resentation G(S, E). G(S, E) is then continuously updated

([graph network updates]) with the other SDN controllers.

BalCon, using the updated information in the local graph,

computes the computational load and the migration cluster

in case of congestion through the BalCon Algorithm entity.

In case of migration BalCon Algorithm informs Migration

Manager entity for the local migrations and other controllers

for the other migrations.

BalConController extends RYU functionalities, by sup-

porting the multicontroller features: it can run on multiple

instances on different hosts/networks (each controller has an

IP address) and each instance manages a portion of the entire

network. It also implements a homemade inter-controller

48

messaging through UDP sockets and a custom application

protocol in Python. The inter-controller messaging permits

the controllers to exchange themselves different kind of

information like among Graph Network Manager entities

(e.g., traffic updates) and Migration Manager entities (e.g.,

switches to be migrated). A more reliable solution could be

the use of distributed data store like Zookeeper or Hazelcast

[10]. Migration Manager module implements the switch

migration procedure proposed in [9] that guarantees liveness

and safety for each switch migration. Finally, BalConCon-

troller fully implements the BalCon algorithm that can run

indipendently in each SDN controller based on the unified

view of the entire network continuously updated.

B. Functionality Test

We consider the topology in Figure 1 with a different traf-

fic configuration: Host H1 generates 24 new flows/second
to H2, routed through S1, S2; host H3 generates 30 new

flows/second to H8, routed through S3, S4, S7, S8. When

C1 load reaches the threshold (here set to 10) it triggers

BalCon and S3 and S4 are migrated to C2. We used 4

physical machines depicted in grey (PC1, PC2, PC3, and

PC4) in Figure 10. PC1 contains the hosts H1 to H8

implemented as Network Namespaces [2]. PC2 contains the

switches S1 to S8 implemented using Open vSwitch v2.0.2

[3]. In order to implement different logical connections, i.e.,

H1−S1, H2−S2, H3−S3, H6−S6, H8−S8, on a single shared

physical cable connecting PC1 and PC2, we configured two

bridges with VLAN. PC3 and PC4 contain the two instances

of BalConController, respectively. The traffic is generated

using iperf tool.

��
��

��

��

��

�	
� �

��
��
��

�
�
��

���

�
����
��

�
�������
������

�
�������
������
�
������

�

��

��
��

�

��

��
��

�	
���

��

��

��

��

�	
�������������

�	
������������� �	
�������������

����	
��

����	
��

����	
��

����	
��

����	
��

��

��

��

�	

��
��
��������������

��
��
��������������

�

��

��

��

��� ���

��� ���

Figure 10. Functionality Test Testbed.

BalConController computes its congestion using the for-

mula expressed in Equation 9 normalized to 10. The con-

gestion is checked every 0.2 seconds. The load is put in an

array with size 50 items, so each controller has an history

of 10 seconds. If the controller surpasses the threshold more

than 10 times over 50, it triggers BalCon.

Figure 11 shows the load of the two controllers and the

effect of the migration of S3 and S4 to C2.

�
�
�
�
�

��

�� �����	����	

��
����

��������	

�����
���

��

��

�����
���
����

Figure 11. Functionality Test Performance.

VII. RELATED WORKS

[1], [7], [11], [26] propose multi-threaded design and

parallelization techniques of OS processes in the SDN con-

troller. [20] proposes a rethinking of the design of the SDN

controllers into a lower level software that leverages both op-

erating system optimizations and modern hardware features.

[23] mitigates the scalability problem of the SDN controller

by offloading all the packet inspection and creation to the

GPU. Other works have also explored the implementation of

distributed controllers through the using of multiple hosts:

with different roles [8], [13], [27] or with equal roles [18],

[19], [25]. The main focus of these papers is to address

the state consistency issue across distributed controller in-

stances, while preserving good performance. Whereas [14]–

[16] focus on the controller placement problem minimizing

the communication delay between controllers and switches.

Current existing distributed controller solutions still suf-

fer from the static mapping between SDN switches and

controllers, limiting the capability of dynamic load adap-

tation. [9], [10] proposes an elastic distributed controller

architecture able to force migration of SDN switches to

different controllers using the existing OpenFlow standard,

whereas [5] tries to model the problem of switch-controller

assignment, minimizing the communication cost (in terms

of hops) among controllers and switches.

VIII. CONCLUSION AND FUTURE WORKS

BalCon is a SDN switch migration mechanism able to

achieve load balance among SDN controllers with small

migration cost. Performance analysis shows that BalCon is

effective and practical with low computational complexity

and migration cost. The evaluation we did was almost en-

tirely based on Matlab simulations with synthetic workloads.

Our next objective will be: a depth analysis of BalCon

in a realistic testbed; a more detail analysis on migration

performances (cost and reasonable frequency); and a tradeoff

analysis between a solution that requires high number of

migrations but a low computation time (e.g., METIS) and

BalCon that requires less migrations with an higher compu-

tation time.

49

REFERENCES

[1] Floodlight openflow controller. http://www.projectfloodlight.
org/floodlight/. Accessed: 2014-04-24.

[2] Network namespace. http://man7.org/linux/man-pages/man8/
ip-netns.8.html. Accessed: 2015-09-24.

[3] Open vSwitch. http://openvswitch.org/.

[4] RYU controller. https://osrg.github.io/ryu/.

[5] M. Bari, A. Roy, S. Chowdhury, Q. Zhang, M. Zhani,
R. Ahmed, and R. Boutaba. Dynamic controller provisioning
in software defined networks. In Network and Service
Management (CNSM), 2013 9th International Conference on,
pages 18–25, Oct 2013.

[6] T. Benson, A. Akella, and D. A. Maltz. Network traffic char-
acteristics of data centers in the wild. In Proceedings of the
10th ACM SIGCOMM Conference on Internet Measurement,
IMC ’10, pages 267–280, New York, NY, USA, 2010. ACM.

[7] Z. Cai, A. L. Cox, and T. S. E. Ng. Maestro: A system for
scalable openflow control. Technical Report TR10-11, CS
Department, Rice University, Houston, TX, USA, dec 2010.

[8] A. R. Curtis, J. C. Mogul, J. Tourrilhes, P. Yalagandula,
P. Sharma, and S. Banerjee. Devoflow: Scaling flow manage-
ment for high-performance networks. In Proceedings of the
ACM SIGCOMM 2011 Conference, SIGCOMM ’11, pages
254–265, New York, NY, USA, 2011. ACM.

[9] A. Dixit, F. Hao, S. Mukherjee, T. Lakshman, and R. Kom-
pella. Towards an elastic distributed sdn controller. In
Proceedings of the Second ACM SIGCOMM Workshop on
Hot Topics in Software Defined Networking, HotSDN ’13,
pages 7–12, New York, NY, USA, 2013. ACM.

[10] A. A. Dixit, F. Hao, S. Mukherjee, T. Lakshman, and R. Kom-
pella. Elasticon: An elastic distributed sdn controller. In
Proceedings of the Tenth ACM/IEEE Symposium on Archi-
tectures for Networking and Communications Systems, ANCS
’14, pages 17–28, 2014.

[11] D. Erickson. The beacon openflow controller. In Proceedings
of the Second ACM SIGCOMM Workshop on Hot Topics
in Software Defined Networking, HotSDN ’13, pages 13–18,
New York, NY, USA, 2013. ACM.

[12] M. Garey, D. Johnson, and L. Stockmeyer. Some simplified
NP-complete problems. pages 47–63. ACM, 1974.

[13] S. Hassas Yeganeh and Y. Ganjali. Kandoo: A framework for
efficient and scalable offloading of control applications. In
Proceedings of the First Workshop on Hot Topics in Software
Defined Networks, HotSDN ’12, pages 19–24, New York, NY,
USA, 2012. ACM.

[14] B. Heller, R. Sherwood, and N. McKeown. The controller
placement problem. SIGCOMM Comput. Commun. Rev.,
42(4):473–478, Sept. 2012.

[15] D. Hock, M. Hartmann, S. Gebert, M. Jarschel, T. Zinner, and
P. Tran-Gia. Pareto-optimal resilient controller placement in
sdn-based core networks. In Teletraffic Congress (ITC), 2013
25th International, pages 1–9, Sept 2013.

[16] Y. Jimenez, C. Cervello-Pastor, and A. Garcia. Defining
a network management architecture. In Network Protocols
(ICNP), 2013 21st IEEE International Conference on, pages
1–3, Oct 2013.

[17] G. Karypis and V. Kumar. A fast and high quality multi-
level scheme for partitioning irregular graphs. SIAM J. Sci.
Comput., 20(1):359–392, Dec. 1998.

[18] T. Koponen and et. al. Onix: A distributed control platform
for large-scale production networks. In Proceedings of the
9th USENIX Conference on Operating Systems Design and
Implementation, OSDI’10, pages 1–6, Berkeley, CA, USA,
2010. USENIX Association.

[19] D. Levin, A. Wundsam, B. Heller, N. Handigol, and A. Feld-
mann. Logically centralized?: State distribution trade-offs
in software defined networks. In Proceedings of the First
Workshop on Hot Topics in Software Defined Networks,
HotSDN ’12, pages 1–6, New York, NY, USA, 2012. ACM.

[20] S. Mallon, V. Gramoli, and G. Jourjon. Are today’s sdn con-
trollers ready for primetime? In 2016 IEEE 41st Conference
on Local Computer Networks (LCN), pages 325–332, Nov
2016.

[21] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar,
L. Peterson, J. Rexford, S. Shenker, and J. Turner. Open-
flow: Enabling innovation in campus networks. SIGCOMM
Comput. Commun. Rev., 38(2):69–74, Mar. 2008.

[22] Open Networking Foundation. OpenFlow Switch Specifica-
tion, Mar. 2014. Ver. 1.3.4.

[23] E. G. Renart, E. Z. Zhang, and B. Nath. Towards a gpu sdn
controller. In 2015 International Conference and Workshops
on Networked Systems (NetSys), pages 1–5, March 2015.

[24] S. E. Schaeffer. Survey: Graph clustering. Comput. Sci. Rev.,
1(1):27–64, Aug. 2007.

[25] A. Tootoonchian and Y. Ganjali. Hyperflow: A distributed
control plane for openflow. In Proceedings of the 2010
Internet Network Management Conference on Research on
Enterprise Networking, INM/WREN’10, pages 3–3, Berkeley,
CA, USA, 2010. USENIX Association.

[26] A. Tootoonchian, S. Gorbunov, Y. Ganjali, M. Casado, and
R. Sherwood. On controller performance in software-defined
networks. In Proceedings of the 2Nd USENIX Conference on
Hot Topics in Management of Internet, Cloud, and Enterprise
Networks and Services, Hot-ICE’12, pages 10–10, Berkeley,
CA, USA, 2012. USENIX Association.

[27] M. Yu, J. Rexford, M. J. Freedman, and J. Wang. Scalable
flow-based networking with difane. In Proceedings of the
ACM SIGCOMM 2010 Conference, SIGCOMM ’10, pages
351–362, New York, NY, USA, 2010. ACM.

50

