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Abstract—The design of High Throughput Satellite (HTS)
systems builds on the concept of Smart Gateway Diversity
(SGD) to exploit the spatial diversity of gateways in case
of feeder link outage, occurring because of atmospheric
impairments introduced in Extremely High Frequency (EHF)
frequency bands. The gateway handover procedure requires
precise prediction algorithms and coordination among different
network elements. This paper presents novel outage prediction
algorithms based on machine learning concepts, integrated in
the framework of SDN architectures, to efficiently orchestrate
the gateway handover operations. Simulation campaigns prove
the validity of the proposed concept and shed light on the
potentials of the SDN architecture in future HTS systems.

I. INTRODUCTION

The increasing demand for high-throughput services (e.g.,

UHDTV) and anywhere-anytime Internet connectivity have

pushed satellite industry and operators towards the design

and development of a new class of High Throughput Satellite

(HTS) systems, exploiting Extremely High Frequency (EHF)

frequency bands (>30 GHz) in the feeder link. This concept

allows dramatically increasing the overall aggregate satellite

capacity (terabit/s),provided that the severe atmospheric im-

pairments introduced in these frequency bands are properly

counteracted by sophisticated gateway diversity concepts (e.g.,

Smart Gateway Diversity (SGD)).

In this regard, the scientific community has thoroughly

investigated the propagation aspects and proposed different

SGD architectures [1], mostly focusing on capacity-achieving

concepts. More recently, some attention has been also given

to gateway handover techniques relying on the application

of network coding and new channel prediction algorithms

[2]. In spite of the effort dedicated so far to these aspects,

there is no full understanding of the network architecture

implications when satellite and terrestrial networks are inte-

grated to implement the SGD concept. The EU-funded BATS

project (http://www.batsproject.eu/) proposed some prelimi-

nary solutions, consisting in the use of dedicated links to

interconnect gateways or to rely on the existing terrestrial

network infrastructure. However, no specific analysis of the

coordination between terrestrial and satellite networked nodes

has been carried out. On the other hand, the effectiveness of the

gateway handover procedure is very much influenced by the

accuracy of the employed channel outage prediction algorithm,

whose foundation is given in ITU-R recommendations [3].

According to the aforementioned research gaps, the pa-

per proposes novel channel prediction algorithms based on

machine-learning concepts, which are used to optimize the

performance of the gateway handover procedure. On the

other hand, the coordination of network nodes, as supporting

efficient handover operations, is framed in the context of

Software Defined Networking (SDN) architectures, whose

recent preliminary studies showed promising potentials also

for applicability to satellite networks [4].

The remainder of this paper is structured as follows. Section

II introduces the reference system, putting emphasis on the

main features of the SDN-based architecture with respect to

the gateway handover procedures as well as outage link pre-

diction schemes. Section III formulates the outage prediction

problem and proposes machine-learning based solutions. The

performance assessment is reported in Section IV, where indi-

cations about the most promising techniques are also provided.

Finally, Section V draws conclusions and summarizes open

research points, which will be addressed in future extensions

of this work.

II. REFERENCE SYSTEM

A. Satellite Scenario

This paper considers a star multi-beam multi-gateway satel-

lite network and focuses on the feeder up-link, implementing

the DVB-S2 technology [5]. The overall satellite network is

controlled by a set of Network Control Centres (NCCs), whose

functions can be co-located in the gateways. The feeder-link

established between a gateway and the satellite, corresponding

to the forward up-link and the return down-link, operates in

the Q/V frequency bands (33-50 and 50-75 GHz, respectively).

On the other hand, the user link established between satellite
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terminals and satellite, corresponding to the forward down-

link and return up-link, operates in the Ka frequency band

(27-40 GHz). The use of EHF frequency bands for data com-

munications, however, poses formidable challenges in terms of

propagation impairments (especially because of rain fading),

which may cause gateway feeder-link outage events, whereby

gateway handover procedures are necessary. Further to this,

achieving high service availability figures (>99.5%) requires

the implementation of the smart gateway diversity architecture,

so that back-up gateways or spare capacity are made available

in order to serve the additional data traffic load resulting from

gateway handover events.

In this context, it is immediate to see that 1) network

architectural implications and 2) link outage prediction are of

paramount importance to properly design the overall network.

As to the former, re-routing mechanisms during the handover

procedure have to be carefully designed, properly supported

by the decision-making and coordination schemes necessary

to select and re-configure the gateways towards which the

re-routed traffic should be forwarded. As to the latter, the

detection of a forthcoming outage event, which is based on

the ”strength” of the beacon signal received from the satellite,

must be performed so as to avoid delayed handover operations,

which might result in intolerably high packet loss rates, as

argued in [2]. The two aforementioned points are further

elaborated in the next two sections.

B. SDN-based Architecture

The need for network nodes’ coordination and re-

configuration, as stated in the previous section, calls for

new networking functions that can be conveniently offered

by the SDN concept. SDN is revolutionizing the networking

industry by enabling programmability, easier management and

faster innovation [6], [7]. These benefits are made possible

by its centralized control plane architecture, which allows the

network to be programmed by the application and controlled

from one central entity.

The SDN architecture is composed of both switches/routers1

and a central controller (SDN controller). SDN-enabled de-

vices process and deliver packets according to rules stored in

the flow table (forwarding state), whereas the SDN controller

configures the forwarding state of each switch using a standard

protocol: OpenFlow (OF) [7].

Handover procedures in a HTS system can be efficiently

implemented using the real-time capabilities of SDN and in

particular the re-routing procedures of a set of flows from a

gateway experiencing link outage to another one.

Specifically, we consider the satellite networks scenario

depicted in Figure 1, in which 3 gateways (GW1, GW2, GW3)

are connected to the satellite ’SAT’ and to the upstream SDN-

enabled switches (S1, S2, S3), respectively. S1, S2, S3 are

controlled by an SDN Controller using OpenFlow, whereas

GW1, GW2, GW3 and NCC1, NCC2, NCC3 are managed by

the NCC/GW Manager through dedicated control protocols.

1In the following we will use the terms: SDN devices, OpenFlow devices,
OpenFlow switches, interchangeably.

Fig. 1. Smart Gateway Diversity Scenario.

NCCs periodically send to information about measured

SINR of controlled feeder links NCC/GW Manager, while

GWs send information about the occupation of the correspond-

ing queue.

The Central Node is the joint entity composed of the

NCC/GW Manager and the SDN Controller and represents

the intelligence of the entire network. On the one hand, it

receives information about physical parameters of the link

(computation of SINR and queue occupation) and computes

the probability of feeder link outage. On the other hand,

it decides which flows, traversing the gateway experiencing

future outage, should be re-routed to alternative gateways.

Figure 2 shows the block diagram representation of the

Central Node. Prediction of link outage and estimation of

congestion events occurring at GWs can be implemented

as functions running on top of the SDN Controller (north-

bound applications). In turn, the SDN Controller exposes

its functionalities to the northbound applications (flows map,

routing map). Finally, the rerouting Engine is responsible for

identifying the traffic flows that need to be migrated and

informs the Routing Manager/Flows Rule Generator, creating

the OF rules for S1, S2, S3.

It can be noticed that the architecture proposed in this paper

follows the design principles also explored in [4]. However,

differently from [4], the two managers (i.e., SDN Controller

and NCC/GW Manager) are implemented as two separated

entities that are joined through proper control primitives

(the dotted lines in Figure 2). Further to this, [4] does not

thoroughly explain the functions carried out by the SDN

Controller, whereas our proposal elaborates feeder-link outage

prediction algorithms that should be performed by the Central

Node. It can be also noticed that the availability of information

about outage events and gateway queue occupation can be

exploited by the SDN controllers also to implement more

efficient Quality of Service (QoS) management solutions,

which is however beyond the scope of this paper.



Fig. 2. Block Diagram of the Central Node.

C. Prediction of Feeder Link Outage Events

The prediction of forthcoming feeder link outage events

is a key function to properly and efficiently perform han-

dover operations. Link outage events are typically detected

on the basis of the SNR figures computed according to the

received power of satellite beacons. Accurate estimation of

outage events timing is especially relevant in the reference

application domains (e.g., HTS systems operating in EHF),

where loose forecast of such events can give rise to either

feeder link capacity waste or excessive packet loss. The former

may occur in case of conservative estimation of the time

instant, in which the feeder link will be no longer available,

resulting in unnecessary anticipation of handover operations.

On the other hand, the latter can happen when a network

operator attempts to take advantage of the satellite capacity

as much as possible, hence excessively delaying the handover

execution and eventually resulting in information loss. From

this standpoint it is immediate to grasp the importance of

accurate outage estimation.

Starting from the early 90’s, a significant literature exists

on SNR prediction over satellite channels, in particular in the

Ka band context. [8] exploits linear regression to anticipate

an outage event of 2 s. [9] shows how a neural network

may achieve better performance than traditional statistical and

autoregressive moving average (ARMA) methods. Studies on

non-linear models have received interest more recently, see,

e.g., [10]. A control-theoretic perspective is provided to the

problem in [11], by updating system statistics from real data.

[11] discusses also how the relation between prediction and the

linear trend of data may be hardly investigated. In [12], ARMA

is used with closed-form expressions of the performance

measures (outage probability and prediction error) with an

anticipation time of 10 s. In the Q/V band, recent studies [13]

address the derivation of analytic expressions of prediction and

outage probabilities. The sensitivity to rain and the high rate

of the Q/V band lead to further investigations of prediction

methods with large anticipation of outage events. The largest

part of the approaches in the literature exploits either function

regression (also used here as a performance comparison) or

probabilistic methods.

D. Paper Contribution

The main contribution of this paper is to develop a feeder

link outage prediction algorithm operated without any a-priori

assumption on the probability distribution of the SNR, taking

advantage of supervised learning concepts [14]. The intuition

behind the approach is the formulation of the SNR prediction

as a classification problem, where the results of SNR pre-

processing (i.e., filtering by first order regression) is given as

input to the classifier. Regression techniques have been used

as performance benchmarks to validate the proposed concept.

III. PREDICTION PROBLEM

A. Problem Statement

The problem consists of predicting whether the SNR will

be below a given threshold at a given time in the future. The

threshold is typically associated to a channel outage event. The

prediction is done on the basis of past SNR samples, acquired

over a given observation horizon. Let s be the SNR signal

discretized over time; s(t) denotes the sample at time t. A

new prediction is provided at each discrete time t = 1, 2, ...,
on the basis of the information vector I(t) = [ s(t − T +
1), ..., s(t − j), ..., s(t) ], T being the size of the observation

window over the past and j = 0, .., T − 1. The ith component

of the information vector I(t) will be henceforth referred to as

sj(t) = s(t−j). The prediction is with respect to time (t+td),
td being the time lag into the future. The outage threshold is

denoted by γth. Let f(I(·), ·) a generic prediction function.

An outage is foreseen at time t if f(I(t), t+ td) > γth.

B. Proposed Prediction Algorithms

The proposed prediction algorithms exploit regression ap-

proximation of the reference function f(I(·), ·), of which only

a set of samples is available.

1) Linear Regression: Linear regression (LR) is performed

at each time t on the samples collected in I(t). The coeffi-

cients for the slope m(t) and the intercept q(t) in the linear

regression are computed according to a least-squares approach

as follows:

m(t) =
T ·∑T−1

j=0 j · sj(t)−
∑T−1

j=0 j ·∑T−1
j=0 sj(t)

T ·∑T−1
j=0 j2 − (

∑T−1
j=0 j)2

(1)

q(t) =

∑T−1
j=0 sj(t)−m(t) ·∑T−1

j=0 j

T
(2)

The parameters m and q are derived with a small com-

putational cost independent of T , because the number of

operations at every new sample is always the same. Once

the parameters have been updated at time t, the prediction

by linear regression, ŝreg, at any time t′ in the future (t′ > t)
is ŝreg(t

′) = m(t) · t′ + q(t). The corresponding prediction is

derived by verifying whether ŝreg(t + td) ≤ γth (no outage

is predicted) or not (an outage is predicted). No datasets



are needed on historical SNR data, because a new ŝreg is

inferred at any time according to the last update of the linear

parameters. The technique automatically adapts to the trend

currently present in the SNR signal.

2) Neural Network: A neural network (NN) is used to track

the non-linearity of the SNR evolution over time. A dataset

is defined on the basis of the information vector I(t) over

k observation windows as follows: ΨNN = {(Ik, s∗k), k =
0, ...,K − 1}, where dependency on time t has been dropped

to simplify the notation and s∗k is the signal prediction target

at t + td, i.e. s(t + td). Hence, the ΨNN dataset maps each

Ik into the corresponding signal at time (t + td). A neural

network is defined with the same input Ik(·) and with weights

ε: ŝNN (Ik(·), ε). A neural training problem is then derived

from the ΨNN dataset. The NN training consists of finding

the weights assignment ε∗ so that:

ε∗ = argmin
ε

J(ε); J(ε) =

K−1∑

k=0

[s∗k − ŝNN (Ik, ε)]2. (3)

Problem (3) consists of a regular neural regression scheme that

tunes the output of the NN in order to learn the {I} mapping

collected in ΨNN through the function ŝNN . Operatively, as

similarly discussed for LR, once (3) is solved, the resulting NN

may be used to infer new values of s∗k according to new values

of I . The prediction is performed as in the previous subsection

by replacing ŝreg with ŝNN . In practice, a re-training may

be started each time a new dataset of SNR is acquired. This

helps follow SNR fluctuations and avoids using the NN with

historical information which may be too old to drive the right

prediction at the current time.

C. Classification

1) Rationale: The prediction function f(I(·), ·) (section

III-A) is now investigated by posing the problem under a

classification setting. The amount of information needed to

solve a classification problem is considerably lower than that

required in a regression problem [15].

A classification problem is formulated as follows. Let ω = 0
or 1 denote the under- or over-threshold events, namely, s(t+
td) ≤ γth or otherwise, respectively. Let Ψ = {(Ik, ωk), k =
0, ...,K − 1} be a dataset corresponding to the collection of

the SNR in absence and in the presence of outage events.

More specifically, Ik contains no-outage events if ωk = 0, i.e.

s(t+ td) ≤ γth, whereas it contains outage events if ωk = 1.

The same conditions hold if one-step shift over the SNR trace

is applied to consider Ik+1. The collection of points in Ψ
are derived by iterating over the available SNR trace. The

classification problem consists of finding the best boundary

function g(·) separating the Ik points in Ψ, according to the

two classes ω = 0 or ω = 12.

Several algorithms are available to find g(·) according to the

supervised learning literature [14]. As reported in the results,

2In this context, I is called the ‘vector of features’, the features being the
samples sk in Ik .

if the feature vector lies in (or may be projected into) a bi-

dimensional (or three-dimensional) space, Ψ may be easily

visualized to give a first insight into the difficulty of the

problem (i.e., how much the available samples of the feature

vector are separable with respect to the two classes). Once g(·)
is available, it may be used in the following way. The current

SNR signal is inspected by building a new vector I ′ on the

basis of the last T samples; the corresponding prediction is

derived by comparing I ′ with g(·).
2) Bayes: One of the most traditional and simplest classi-

fiers is used to find g(·) from Ψ: the so-called Bayes classifier

(see, e.g., chapter I of [14], also known as ‘normal-based

discriminant analysis’).

As a first step, the original Ik data are mapped into another

space Ir corresponding to the parameters of linear regres-

sion: Ik
r = {(mk, qk), k = 0, ..., T − 1}, mk, qk being the

parameters originated from Ik as explained in section III-B1.

This step helps map the current linear trend of SNR into the

two classes. Two multivariate normal probability distributions,

p1(Ir|ω = 1) and p0(Ir|ω = 0), are built from the training set

(e.g., a subset of Ψ) under the ‘maximum likelihood parameter

estimation’ paradigm, by data corresponding to the outage

class when building the first normal distribution and data

corresponding to non-outage events for the second one [16].

A new feature vector Ih
r is assigned to the outage class if

p1(I
h
r |ω = 1) > p0(I

h
r |ω = 0) (by assuming equal a-priori

probabilities of the two classes). Since a pooled covariance

matrix estimation is used when building the two probabil-

ity distributions, the obtained classification rule draws linear

boundaries between regions of space allocated to ‘outage’ and

‘no outage’ groups of data. The g(·) function thus becomes a

linear boundary and acts as follows. Given a new sample I ′
r, if

((K−1+L1 ·q′+L2 ·m′) ≤ 0 ) ω′=1, else ω′=0; K, L1, L2

being the linear boundaries obtained by the equalization of

the two probability distributions p1(·|ω = 1) and p0(·|ω = 0)
[16].

The method assumes a Gaussian distribution of the features

in each class. This is an approximation and may lead to a

classification error, whose detrimental effect may be circum-

vented by using more complex classifiers, such as Support

Vector Machines, neural networks or others. Even though

the distribution of Ir samples graphically suggests that the

Gaussian assumption does not hold for outage data (Fig.

5 further on) and that the best g(·) should assume a non-

linear trajectory in the Ir space, the good results obtained

here corroborate the reliability of the approach. Bayes is also

preferable in terms of computational effort with respect to

other classifiers.

IV. RESULTS

A. Performance Measure

The performance metrics of interest are the false positive
and false negative rates (FPR, FNR). The former is the

measure of how many times an outage is predicted, but it

does not happen in reality. The latter is analogously related to

outages not correctly predicted.
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Fig. 3. Linear regression.

B. Simulation Scenario

The considered satellite network is composed of a number

of gateways operating throughout Europe, connecting to a

geostationary satellite with a communication link established

at a central frequency of 50 GHz. The performance analysis

is focused on the propagation impairments experienced by a

satellite station, which was assumed as located in Weilheim

(Germany). The computation of the overall signal attenuation

(e.g., scintillation and rain fading) was done according to

synthetic traces, recorded over 2 months period, with sampling

time 1 s. On the basis of point-to-point link budget compu-

tations and use of ModCod thresholds (according to DVB-S2

specification), it was possible to map feeder link outage events

to the cases where the overall attenuation was in the range

25− 35 dB, so as to take into account different link margins.

The training for NN and Bayes is done with respect to a

portion of the trace with a significant portion of outage events

(106 samples). The test is performed over the entire trace (5.4·
106 samples), which contains other outage events, not used

for training. LR is directly tested over the entire trace. An

IntelCore i7-3630QM@2.4GHz has been used with Matlab

version R2014b.

C. Linear Regression

The performance of LR is considered in Fig. 3. Since FPRs

are of the order of 10−3, only the FNRs are depicted with

respect to the T parameter. For each curve, there is always

a global minimum (T ∗). The minima are different for each

curve. The centers of the two circles in the figure show the

minima of the td=30 cases with γth = 25 and γth = 35 dB3.

In general, the curves show a flat trend in the T=[100, 600]
range, apart from the cases with td = 100 s. With td = 30 s,

T ∗ leads to FNRs around 0.1 with both thresholds. Both NN

and Bayes experience better performance with large td.

D. Neural Regression

A neural network with 5 and 8 hidden neural units is

used with T = 2 and 10 s, respectively, with hyperbolic

3Please note that here γth denotes the threshold on the channel attenuation,
whereas in Section III-A it referred to the received SNR
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Fig. 4. Neural regression.

tangent activation function. The training is done through the

Levenberg-Marquardt algorithm [17]. The database driving the

training phase is divided in 70% of samples for training and

15% for both validation and test. To avoid overfitting 4 , the

minimum number of hidden neural units is empirically found

in correspondence of the minimum J , defined in (3).

The time for training has been fixed to 8’; after that time,

in both cases with T = 2 and 10 s, the cost has completed

its steepest descent. Information vectors larger than T=10 s

have not been explored to avoid computational burden and

the difficulty of choosing the best setting in the number of

neural units.

Fig. 4 shows the error rates by changing the threshold γth
with td = 30 s. The case of td = 60 s is qualitatively very

similar, apart from the differences reported in the following.

The ranges of γth with zero error rates are in [30, 50] and

[30, 40] dB with td = 30 and 60 s, respectively (the largest

anticipation time, td = 60, clearly reduces the performance

of the classifier). Outside these ranges, the error rates increase

exponentially, thus limiting the applicability of NN. Increasing

T from 2 to 10 s does not lead to a significantly better

performance. The maximum value of FPR is 1, whereas those

of FNR are 0.082 and 0.2 with td = 30 and 60 s, respectively.

E. Bayes

The inherent computational time for training is of the order

of some seconds. Fig. 5 shows the linear separator of Bayes

(dashed line) between the two classes under the following

setting: T = 30 s, td = 30 s and γth = 35 dB. The figure

helps appreciate how the samples are distributed among the

two classes in the Ir space. The outage case experiences more

oscillations of the feature vector.

Fig. 6 shows all the linear separators obtained with Bayes

under all the combinations of: T = {5, 30, 60} s; td =
{30, 60} s; γth = {25, 35} dB. The performance can be

summarized for all the combinations as follows. FPRs are

4In neural training, overfitting may be avoided by increasing the number
of hidden neural units while the learning error decreases. When such an error
reaches a steady state, the minimum number of hidden neural units is found.



0 10 20 30 40 50 60 70 80
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

q

m

Bayes T=30 s, td=30 s, γth=35 dB

no outage
outage

Fig. 5. Bayes classifier and samples of the Ir space.

0 10 20 30 40 50 60 70 80 90

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

q

m

Bayes

T=60 td=60 γth=35

T=5 td=30, 60 γth=25

T=5 td=30, 60 γth=35

T=30 td=30, 60 γth=35

T=60 td=30 γth=35

T=30 td=30, 60 γth=25

T=60 td=30, 60 γth=25

Fig. 6. Bayes classifiers under variable parameters.

always of the 10−3 order; FNRs are around 2 · 10−2 with

γth = 25 dB and 5 · 10−3 with γth = 35 dB. The higher FNR

with 25 dB is due to the fact that decreasing γth to 25 dB

implies increasing the overlap of the classes. In other words,

similar values of m and q are mapped on different classes

more often than with γth = 35 dB, thus introducing more

confusion into the classifier.

The following properties of the lines may be appreciated

as well, by analyzing the figure in more details. Under equal

values of T and γth, td = 30 and 60 lead to the same separator,

apart from the case with T = 60 and γth=35, which shows

two slightly different lines with td = 30 and 60 s (the two

dashed lines in the figure). Moreover, the groups of 4 lines

with fixed T are close to each other, independently of the other

parameters (td and γth). Inside each group, a little change

arises when γth changes from 25 to 35 dB. This behavior may

consequently lead to the investigation of a common classifier

once T has been fixed. For example, the “average” line of

each group may be used. This topic has been however left

open for future research. To summarize, Bayes guarantees low

error rates in a larger set of the parameters than the other

techniques. More specifically, it is more reliable than the NN

when γth < 30 dB.

V. CONCLUSIONS

This paper proposed novel feeder link outage prediction

algorithms for possible use in future HTS systems operating in

the EHF frequency bands. The use of the proposed prediction

algorithms (LR, NN, and Bayes) showed significant improve-

ment over traditional algorithms and opened the door to further

developments in terms of adaptive prediction to non-stationary

SNR.

Future extension of this work include the design of the full

SDN-based network architecture, with the definition of QoS

management solutions building on OpenFlow signaling.
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