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Abstract—Two criteria are proposed to characterize and
improve suboptimal coordinate-convex (c.c.) policies in Call
Admission Control (CAC) problems with nonlinearly-constrained
feasibility regions. Then, a structural property of the optimal c.c.
policies is derived. This is expressed in terms of constraints on
the relative positions of successive corner points.

Index Terms—Call admission control, feasibility region, coor-
dinate convex policies.

I. INTRODUCTION

CALL Admission Control (CAC) is a tool of topical im-
portance to guarantee a specific Quality of Service (QoS)

over telecommunications networks for which it is possible
to define the concept of call (also called connection). Phone
calls, as well as (focusing on IP-based traffic) VoIP and WEB
connections, can benefit from CAC. CAC implementation is
often based on the availability, at each communication link, of
a feasibility region Ω𝐹𝑅 in the call space [1], where given QoS
requirements in terms of packet loss/packet delay probability
are statistically guaranteed for each connection. No QoS is
possible without controlling the call admission to a network
as network resources (bandwidth and buffer space) are finite
and must be shared among the connections currently present
in the network. The simplest possible way of admitting or
rejecting a new call into one link consists in accepting it
if and only if the call state after its potential admittance
is still within Ω𝐹𝑅. However, this policy (called complete
sharing) may lead to a poor use of the resources [2]. This
often motivates the consideration of other admission policies.
A commonly used class of admission policies is represented by
the coordinate-convex (c.c.) policies [2], which restrict Ω𝐹𝑅

to suitable subsets Ω.
In general, finding optimal c.c. policies for a CAC problem

is a difficult combinatorial optimization problem, even when
Ω𝐹𝑅 is defined in terms of linear constraints (stochastic
knapsack model). This case is investigated in [2, Chapter 4]
and [3], where structural properties of the optimal c.c. policies
are derived. When some form of statistical multiplexing [2,
pp. 30-33] is used, the optimization problem is even more
difficult, since in this case, typically, Ω𝐹𝑅 is characterized by
nonlinear constraints [1]. Up to our knowledge, the problem
of finding structural properties of the optimal c.c. policies has
received little attention in the literature for the nonlinear case.
One exception is [4], which investigates sufficient conditions
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for the optimality of the complete-sharing policy in the context
of wireless networks.

The letter is organized as follows (preliminary results ap-
peared in a short abstract in [5]). In Section II we summarize
the CAC model studied in [3], whereas in Section III we
present our extension of this model to nonlinearly-constrained
feasibility regions. In Subsections III-A, III-B, III-C, and III-D
we provide, respectively:

∙ two criteria to improve certain suboptimal c.c. policies,
based on the removal or addition of rectangular subre-
gions near suitably-defined corner points;

∙ a characterization of the corner points for which the two
above-mentioned criteria cannot be applied;

∙ a structural property holding for any c.c. policy that
cannot be improved by exploiting the two criteria (in
particular, valid in the case of an optimal c.c. policy);

∙ simulation results for the two criteria.

II. BASIC PROBLEM FORMULATION

Following [3], the state of the CAC system is described by
a 2-dimensional vector n, whose component 𝑛𝑘, 𝑘 = 1, 2,
represents the number of connections from users of class
𝑘, accepted and currently in progress. For each class 𝑘,
inter-arrival times are exponentially distributed with mean
values 1/𝜆𝑘(𝑛𝑘). Holding times of the accepted connections
are independent and identically distributed (i.i.d.) with mean
1/𝜇𝑘. The CAC system accepts or rejects a connection request
according to a c.c. policy. We recall its definition [2].

Definition II.1. A nonempty set Ω ⊆ Ω𝐹𝑅 ⊂ ℕ
2
0 is called c.c.

iff it has the following property: for each n ∈ Ω with 𝑛𝑘 > 0
one has n−e𝑘 ∈ Ω, where e𝑘 is a 2-dimensional vector whose
𝑘-th component is 1 and the other one is 0. A c.c. policy with
associated c.c. set Ω admits an arriving request of connection
iff the state process remains in Ω after admittance.

As c.c. policies are in a one-to-one correspondence with
c.c. sets, we use the symbol Ω for both. The objective to be
maximized by the CAC system in the space 𝒫(Ω𝐹𝑅) of c.c.
subsets of Ω𝐹𝑅 is

𝐽(Ω) =
∑

𝒏∈Ω

(𝒏 ⋅ 𝒓)𝑃Ω(𝒏) , (1)

where r is a 2-dimensional vector whose component 𝑟𝑘, 𝑘 =
1, 2, represents the instantaneous positive revenue generated
by any accepted connection of class 𝑘 that is still in progress
and 𝑃Ω(𝒏) is the steady-state probability that the CAC system
is in state n under the c.c. policy Ω.

For linearly-constrained feasibility regions Ω𝐹𝑅, the
previously-described model is called stochastic knapsack. For
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such a case, in [3], structural properties of the c.c. policies
maximizing the objective (1) (optimal c.c. policies) are inves-
tigated, e.g., the existence of vertical or horizontal thresholds.

III. EXTENSION TO NONLINEARLY-CONSTRAINED Ω𝐹𝑅

We extend the model of [3] by allowing the set Ω𝐹𝑅

(assumed to be c.c.) to have a nonlinear upper boundary,
denoted by (∂Ω𝐹𝑅)

+ (see Fig. 1(a)). Similarly, we denote
by (∂Ω)+ the (linear or nonlinear) upper boundary of Ω.

A. Two criteria to improve suboptimal c.c. policies

We start our study by providing two criteria to establish if
a c.c. policy is suboptimal and to obtain an improved one. A
c.c. policy Ω1 improves a c.c. policy Ω2 iff 𝐽(Ω1) > 𝐽(Ω2).
We recall the following two definitions from [3].

Definition III.1. The tuple (𝛼, 𝛽) ∈ Ω𝐹𝑅 ∖ Ω is a type-1
corner point for Ω iff 𝛽 ≥ 1, (𝛼, 𝛽 − 1) ∈ Ω, and either
𝛼 = 0 or (𝛼 − 1, 𝛽) ∈ Ω. The tuple (𝛼, 𝛽) ∈ Ω𝐹𝑅 ∖ Ω is
a type-2 corner point for Ω iff 𝛼 ≥ 1, (𝛼 − 1, 𝛽) ∈ Ω, and
either 𝛽 = 0 or (𝛼, 𝛽 − 1) ∈ Ω.

Definition III.2. A nonempty set 𝑆− ⊂ Ω𝐹𝑅 is incrementally
removable with respect to Ω (IRΩ) iff 𝑆− ⊂ Ω and Ω ∖ 𝑆−

is still a c.c. set. A nonempty set 𝑆+ ⊂ Ω𝐹𝑅 is incrementally
admissible with respect to Ω (IAΩ) iff 𝑆+∩Ω = ∅ and Ω∪𝑆+

is still a c.c. set.

Loosely speaking, the next Proposition III.3 states the fol-
lowing. Given a c.c. policy Ω, if for some type-2 corner point
one can find two rectangular regions 𝑆+ and 𝑆− (of the below-
defined shape) as in Fig. 1(b), then Ω is suboptimal, since it
can be improved either by adding 𝑆+ or by removing 𝑆−. This
is a nontrivial result, since for the objective (1) and any two
c.c. sets Ω1,Ω2 ⊆ Ω𝐹𝑅, the relationship Ω1 ⊆ Ω2 does not
imply 𝐽(Ω1) ≤ 𝐽(Ω2). Note that, although Proposition III.3
looks similar to [3, Lemma 2], it states a different concept.
While [3, Lemma 2] states a property satisfied by any optimal
c.c. policy, Proposition III.3 provides a constructive way to
improve certain suboptimal c.c policies.

Proposition III.3. Let (𝛼, 𝛽) be a type-2 corner point for Ω
and suppose that there exist 𝑛,𝑚, 𝑝 ∈ ℕ0 such that 𝑆− :=
{(𝛼− 1− 𝑗, 𝛽 + 𝑖) : 𝑗 = 0, . . . , 𝑛, 𝑖 = 0, . . . , 𝑝} ⊂ Ω, is IRΩ,
and 𝑆+ := {(𝛼 + 𝑠, 𝛽 + 𝑖) : 𝑠 = 0, . . . ,𝑚, 𝑖 = 0, . . . , 𝑝} ⊂
Ω𝐹𝑅, is IAΩ. Then, at least one of the following inequalities
holds: (i) 𝐽(Ω ∪ 𝑆+) > 𝐽(Ω); (ii) 𝐽(Ω ∖ 𝑆−) > 𝐽(Ω).

Proof. Recall that, for a not necessarily c.c. set 𝑆 ⊆ Ω𝐹𝑅,
one can define 𝐽(𝑆) := 𝐻(𝑆)/𝐺(𝑆), with 𝐻(𝑆) and 𝐺(𝑆)
expressed in terms of suitable summations1 over the elements
of 𝑆. The definition coincides with (1) for a c.c. set. If 𝑆 :=
{𝑎, 𝑎+ 1, . . . , 𝑏} × {𝑐, 𝑐+ 1, . . . , 𝑑}, then

𝐽(𝑆) = 𝑟1𝑥1(𝑎, 𝑏) + 𝑟2𝑥2(𝑐, 𝑑) . (2)

Now, suppose that neither 𝐽(Ω∪𝑆+) > 𝐽(Ω) nor 𝐽(Ω∖𝑆−) >
𝐽(Ω) holds. Then

1Due to the page limits, we refer to [3] for the expressions of the functions
𝐻(⋅) and 𝐺(⋅), and of 𝑃Ω(⋅) and 𝑥𝑖(⋅, ⋅) in formulas (1) and (2).
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Fig. 1. The sets Ω, 𝑆+ and 𝑆− in Proposition III.3.

𝐽(Ω ∪ 𝑆+) =
𝐻(Ω) +𝐻(𝑆+)

𝐺(Ω) +𝐺(𝑆+)
≤ 𝐽(Ω) =

𝐻(Ω)

𝐺(Ω)
,

which implies 𝐽(𝑆+) = 𝐻(𝑆+)/𝐺(𝑆+) ≤ 𝐻(Ω)/𝐺(Ω) =
𝐽(Ω). Similarly, one gets 𝐽(𝑆−) ≥ 𝐽(Ω), so 𝐽(𝑆−) ≥
𝐽(𝑆+). On the other hand, computing 𝐽(𝑆−) and 𝐽(𝑆+) by
formula (2) one has 𝐽(𝑆−) = 𝑟1𝑥1(𝛼 − 1 − 𝑛, 𝛼 − 1) +
𝑟2𝑥2(𝛽, 𝛽 + 𝑝), 𝐽(𝑆+) = 𝑟1𝑥1(𝛼, 𝛼 + 𝑚) + 𝑟2𝑥2(𝛽, 𝛽 + 𝑝),
thus 𝐽(𝑆−) < 𝐽(𝑆+), but this is a contradiction. So, at least
one between cases (i) and (ii) holds. ■

Proposition III.4 states a similar concept for type-1 corner
points and is proved by reversing the roles of the two classes.

Proposition III.4. Let (𝛼, 𝛽) be a type-1 corner point for Ω
and suppose that there exist 𝑛,𝑚, 𝑝 ∈ ℕ0 such that 𝑆− :=
{(𝛼+ 𝑖, 𝛽 − 1− 𝑗) : 𝑖 = 0, . . . , 𝑝, 𝑗 = 0, . . . , 𝑛} ⊂ Ω, is IAΩ,
and 𝑆+ := {(𝛼 + 𝑖, 𝛽 + 𝑠) : 𝑖 = 0, . . . , 𝑝, 𝑠 = 0, . . . ,𝑚} ⊂
Ω𝐹𝑅, is IAΩ. Then, at least one of the following inequalities
holds: (i) 𝐽(Ω ∖ 𝑆−) > 𝐽(Ω); (ii) 𝐽(Ω ∪ 𝑆+) > 𝐽(Ω).

B. A property of the corner points of any optimal c.c. policy

Let Ω∗ denote any c.c. policy that cannot be further im-
proved via Proposition III.3 or III.4. Our next Proposition III.5
characterizes the corner points for which neither Proposition
III.3 nor III.4 can be applied (see Fig. 2(a) for an example).
This is an interesting result since any such c.c. policy Ω∗ and
any optimal c.c. policy (which, obviously, cannot be further
improved either with Proposition III.3 and III.4 or with other
method), can have only this kind of corner points. We let

𝑙Ω2 (𝑛1) := max{𝑘 ∈ ℕ0 such that (𝑛1, 𝑘) ∈ Ω} , (3)

𝑙Ω1 (𝑛2) := max{ℎ ∈ ℕ0 such that (ℎ, 𝑛2) ∈ Ω} . (4)

The values 𝑙Ω1 (𝑛2) and 𝑙Ω2 (𝑛1) are the maximum numbers of
type-1 and type-2 connections allowed in Ω when one already
has 𝑛2 type-2 and 𝑛1 type-1 connections, respectively. By their
definitions, the functions 𝑙Ω𝑖 (⋅) are non-increasing.

Proposition III.5. The following hold.
(i) Let (𝛼, 𝛽) be a type-2 corner point of Ω for which Propo-

sition III.3 cannot be applied. Then 𝑙Ω2 (𝛼−1) > 𝑙Ω𝐹𝑅

2 (𝛼).
(ii) Let (𝛼, 𝛽) be a type-1 corner point of Ω for which Propo-

sition III.4 cannot be applied. Then 𝑙Ω1 (𝛽−1) > 𝑙Ω𝐹𝑅
1 (𝛽).

Proof. We prove (i); for (ii), similar arguments can be used.
The sets 𝑆+ and 𝑆− in Proposition III.3 are rectangles with
the same height 𝑝. The only value of 𝑝 for which 𝑆− is 𝐼𝑅Ω

is 𝑝 = 𝑙Ω2 (𝛼−1). The maximum possible value of 𝑝 for which
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Fig. 2. (a) An example of a corner point (𝛼, 𝛽) for which neither Proposition
III.3 nor III.4 can be applied. (b) An example of a c.c. policy Ω∗ that cannot
be improved by applying Propositions III.3 and III.4.

𝑆+ is 𝐼𝐴Ω is 𝑝 = 𝑙Ω𝐹𝑅
2 (𝛼). So, if 𝑙Ω2 (𝛼− 1) > 𝑙Ω𝐹𝑅

2 (𝛼), then
Proposition III.3 cannot be applied. If, instead, 𝑙Ω2 (𝛼 − 1) ≤
𝑙Ω𝐹𝑅
2 (𝛼), then one can find sets 𝑆− and 𝑆+ that satisfy its
assumptions (e.g., 𝑝 = 𝑙Ω2 (𝛼 − 1), 𝑛 = 𝑚 = 0). ■

C. A structural property of any optimal c.c. policy

The next Theorem III.6, which is our main result, provides
a characterization of the upper boundary (∂Ω∗)+ of Ω∗ and its
intersection with (∂Ω𝐹𝑅)

+, when Ω∗ has at least two corner
points. Theorem III.6 implies that between any two successive
corner points the intersection between (∂Ω∗)+ and (∂Ω𝐹𝑅)

+

is nonempty (see the dotted ellipse in Fig. 2(b)). Up to our
knowledge, no such result was previously available in the
literature, even for linearly-constrained feasibility regions.

Theorem III.6. Let (𝛼𝑖, 𝛽𝑖) and (𝛼𝑖+1, 𝛽𝑖+1) be two consec-
utive corner points of Ω∗. Then the intersection between the
vertical line 𝑛1 = 𝛼𝑖+1−1 and the horizontal line 𝑛2 = 𝛽𝑖−1
either lies on (∂Ω𝐹𝑅)

+ or is outside Ω𝐹𝑅.

Proof. The claim is equivalent to the pair of inequalities

𝑙Ω𝐹𝑅
1 (𝛽𝑖 − 1) ≤ 𝛼𝑖+1 − 1 , (5)

𝑙Ω𝐹𝑅
2 (𝛼𝑖+1 − 1) ≤ 𝛽𝑖 − 1 . (6)

Let us prove (5). By the definition of 𝑙Ω
∗

2 (𝛼𝑖), the monotonic-
ity of 𝑙Ω

∗
2 (⋅), and Proposition III.5 (i), we get

𝛽𝑖 − 1 = 𝑙Ω
∗

2 (𝛼𝑖) ≥ 𝑙Ω
∗

2 (𝛼𝑖+1 − 1) > 𝑙Ω𝐹𝑅
2 (𝛼𝑖+1) . (7)

Now, suppose that the inequality 𝑙Ω𝐹𝑅
1 (𝛽𝑖 − 1) > 𝛼𝑖+1 −

1, opposite to (5), holds. Let us show that this leads to a
contradiction. As 𝛼𝑖+1 is an integer, one has

𝑙Ω𝐹𝑅
1 (𝛽𝑖 − 1) > 𝛼𝑖+1 − 1 ⇔ 𝑙Ω𝐹𝑅

1 (𝛽𝑖 − 1) ≥ 𝛼𝑖+1 .

This, combined with the property 𝑙Ω𝐹𝑅
2 (𝑙Ω𝐹𝑅

1 (𝛽𝑖−1)) ≥ 𝛽𝑖−1
(which is a consequence of (3) and (4)) and the monotonicity
of 𝑙Ω𝐹𝑅

2 (⋅), implies 𝑙Ω𝐹𝑅
2 (𝛼𝑖+1) ≥ 𝛽𝑖 − 1, but this contradicts

(7). So, (5) must hold. The proof of (6) is similar. ■

D. Simulation results

To verify the effectiveness of the criteria proposed in Sub-
section III-A, we provide some simulation results. We consider
a cell in a cellular network and two classes of traffic, i.e.,

Ω1
Ω2

Fig. 3. (a) initial c.c. policy Ω1; (b) final c.c. policy Ω2.

voice call traffic (class 1) and data traffic (class 2), modelled
by Poisson arrivals and exponential call durations (as often
done in the literature; see, e.g., [6]). For the class-1 traffic
we have (on average) 20 calls per time unit, e.g., per minute
(𝜆1 = 20), with an average holding time of 3 time units per
call (𝜇1 = 1/3). For class-2 traffic we set 𝜆2 = 10 and
𝜇2 = 1/20. The per-call instantaneous revenues of the two
classes are the same (𝑟1 = 𝑟2 = 1). The Ω𝐹𝑅 used in the
simulations has a nonlinear upper boundary that models QoS
constraints, like the ones in [4, Fig. 3] and [1, pp. 46-49].

Starting from the initial c.c. policy Ω1 depicted in Fig. 3(a),
the final c.c. policy Ω2 in Fig. 3(b) has been obtained by
applying Proposition III.3 four times, to suitable corner points.
The initial value of the objective is 𝐽(Ω1) = 66.4229, whereas
the final value is 𝐽(Ω2) = 73.9256, with an improvement of
11.3%. Note from Fig. 3(b) that the c.c. policy Ω2 cannot be
further improved via Propositions III.3 or III.4 and that its cor-
ner points have the structural properties stated in Proposition
III.5 and Theorem III.6.

IV. CONCLUSIONS

CAC is an important tool to guarantee QoS in telecommu-
nications networks. The stochastic knapsack model, as well as
our extension in Section III, can be used, e.g., to model CAC
in telephone exchanges or in cellular networks. We have also
provided a characterization of the optimal c.c. policies in CAC
problems with nonlinearly-constrained feasibility regions. The
results obtained in Subsections III-A, III-B, III-C can be
applied to narrow the search for the (unknown) optimal c.c.
policies and to improve certain suboptimal c.c. policies (see
Subsection III-D). The two criteria proposed in Subsection
III-A may also be integrated in local search or greedy algo-
rithms and applied to problems with more than two classes of
users (e.g., by defining subproblems obtained by partitioning
the set of classes into subsets of cardinalities at most two).
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