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On the QoS Estimation in an OpenFlow Network: The Packet Loss Case
Marco Cello, Mario Marchese, Senior Member, IEEE, and Maurizio Mongelli, Senior Member, IEEE

Abstract—OpenFlow specification for SDN networks leaves to
external entities the control of the queues inside the switches of
the network. SDN typically re-routes flows on less congested paths
before they experience QoS violation. This letter outlines an orig-
inal solution to predict the effect of the re-routing operation by
focusing on the packet loss metric. Since the approach is based on
collected real-time statistics, it can be easily generalized to other
QoS metrics and measurement methodologies.

Index Terms—SDN, OpenFlow, packet loss, neural estimation.

I. INTRODUCTION

I N OpenFlow-enabled switches, queue configuration (ser-
vice rate, buffer size) takes place outside the OpenFlow

protocol [1]. Flows are routed or re-routed on different paths
according to the current level of congestion. In this context,
we derive a methodology to predict in advance the experienced
QoS as a result of the re-routing operation. The QoS metrics
considered is the packet loss. Since the approach is based on
collected statistics without a-priori assumptions on traffic and
working conditions, it is applicable to any QoS metric whose
time evolution is monitored by the system. The mechanism is
also independent to both the way the QoS is monitored and the
target of the prediction, which is the QoS change for conges-
tion. This is a significant advantage because there are several
distinct motivations for QoS degradation (see, e.g., [2] for an
informal discussion about troubleshooting of loss monitoring
via the ping tool). Nothing prevents to let the prediction dis-
criminate separate events leading to the same event of QoS
degradation (see, e.g., [3]); this however is left open for future
research.

The remainder of this letter is structured as follows.
Section II shows the motivations that lead to consider the re-
routing concept and the QoS estimation problem in OpenFlow.
Section III describes the QoS estimation framework. The per-
formance analysis is presented in IV and the conclusions are
drawn in Section V.

II. TECHNOLOGICAL PROBLEM

Current OpenFlow (OF) specification [1], however, gives
the responsibility of rates configuration to external proto-
cols. Information exchange between QoS management plane
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and OF is an implementation-specific choice. “Queue con-
figuration takes place outside the OpenFlow protocol, either
through a command line tool or through an external dedicated
configuration protocol". (Section 7.3.5.8, [1]).

In this perspective, we exploit the quantities returned by OF
as described in the following section in order to build a set of
features which drive QoS forecast before a re-routing opera-
tion. We state the estimation problem on a single traffic buffer.
In virtue of the centralization of all the measures at the SDN
controller, the end-to-end QoS may be derived by repeating
instances of the same problem along the path of the new flow.

III. QOS FORECAST

A. Forecast Model

The proposed methodology is derived by formulating an esti-
mation problem of the QoS in correspondence of the current
and next states of a traffic queue, i.e., before and after the addi-
tion of new flows. A sequence of estimation steps k = 1, 2, . . . ,

is defined such that, on the basis of feedback acquired during
the system evolution, an estimation law f (·) gives indication
about the QoS achieved when a new flow (or a group of flows)
enters the buffer. Such estimation law, or predictor, represents
a function that performs a mathematical mapping between the
acquired feedback and the future QoS1. The feedback consists
of the information available about the current state of the net-
work and the basic statistics of the new flow. The buffer loss in
terms of percentage is the reference QoS metric.

We assume a flow may enter at any time. Two consec-
utive time horizons [k − 1, k] and [k, k + 1] are defined in
correspondence of the time k when the new flow enters the
buffer. The size of the horizons is T . The quantities q(k) and
q(k + 1) denote the QoS metric over the respective horizons
[k − 1, k] and [k, k + 1]. If ν new flows enter at time k, they
increase the number of active sources from N (k) in [k − 1, k],
to N (k + 1) = N (k) + ν in [k, k + 1]. A forecast of q(k + 1)

at time k is required to understand if the new flows may be dis-
ruptive for the QoS or not. The estimation operation is driven
by the estimation law with: q(k + 1) = f (I (k)).

The quantity I (k) is a finite-dimensional information vector
collecting the observations of the features of interest acquired
in the time interval [k − 1, k]. I (·) should contain only basic
statistics collected from OF, such as the mean m and standard
deviation σ of the overall input flow rate of the buffer. As for-
malized above for the QoS, m and σ are computed both for

1In statistics and in machine learning, a predictor function is a linear/non-
linear function (linear/non-linear combination) of a set of coefficients and
explanatory variables (independent variables, the information vector defined
later on), whose values are used to forecast the outcome of a dependent variable
(the QoS, in our case)
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the [k − 1, k] interval: m(k), σ(k) and the successive inter-
val [k, k + 1]: m(k + 1), σ(k + 1). m(k) and σ(k) are got by
OF directly from measurements of the buffer2. Since m(k + 1)

and σ(k + 1) correspond to the presence of the new flows
before they really enter the buffer, basic statistics are set as fol-
lows: m(k + 1) = m(k) + m′, σ(k + 1) = σ(k) + σ ′3, m′ and
σ ′ being the statistics of the new flows. In case of re-routing,
those statistics are returned from OF because they are already
present in the network. If the flows come from outside of the
network (routing case), the statistics are supposed to be known
in advance.

I (·) may also contain information about the statistical prop-
erties of the traffic sources, denoted in compact form with the p
vector4. I (k) thus can assume the following generic form (the
precise definition of the operative used I (k) will be given in
subsection III-D):

I(k) = [T, θ(k), BMax (k), p(k),

N (k), m(k), σ (k), q(k), B(k),

N (k + 1), m(k + 1), σ (k + 1)] (1)

where θ(k) is the queue rate assigned during the [k − 1, k]
horizon (outside of OF control), B and BMax are the cur-
rent and maximum buffer sizes, respectively. The first three
parameters (θ(k), BMax (k), p(k)) define the behavior of the
other ones, whose fluctuations lie over shorter time scales.
θ(k), BMax (k), p(k) are however included in the information
vector in order to evaluate their impact on the estimation error.
The presence of p in the information vector is very important:
the knowledge of a precise description of the sources has an
impact on the estimation performance, as evidenced later. The
use of T in I(·) is motivated as follows. Since the tracking of
performance over fixed time horizons may be noisy in depen-
dence of T , we pursue a self-adaptive mechanism to variable T ,
thus avoiding the need of building different f (·) with respect to
different T . In other words, the mechanism learns the level of
noise corresponding to the specific T and correct it. This is a
significant advantage with respect to other traditional estima-
tion approaches, like Kalman or ARMA, which does not take
into account T explicitly.

B. Neural Approximation of the Estimation Law

The estimation law f (·) is derived by neural approxima-
tion. This is a common approach when the unknown prediction
law may contain non linearities and the noise may be non-
stationary and non-Gaussian (see, e.g., [4], [5]). A neural net-
work (NN) is defined with the same input I (·) and with weights

2The SDN controller makes available the following quantities: 1) the esti-
mated rate per flow that is obtained by subtracting the number of transmitted
bytes, of two consecutive statistics reply messages and divided it by the polling
interval; 2) the number of flows belonging to a specific queue.

3The summation operation exactly foresees the average and standard devi-
ation of the new aggregate in [k, k + 1] only in the presence of a Gaussian
behavior of the sources. The estimation law is thus also responsible for
correcting the error introduced by the presence of non-Gaussian sources.

4For example, p may include information of: NMax , the maximum num-
ber of traffic sources, Bp and β, the peak bandwidth and the burstiness of the
sources, respectively (the burstiness is the ratio between the peak and the aver-
age bandwidth of the sources). The results include a setting related to datacenter
environments.

ω: f̂ (I (·),ω). A regular neural training problem is then derived
from a database containing N f̂ couples {I(ς); q(ς + 1)} for
each sample ς , ς = 1, . . . , N f̂ (no matter how the samples are
obtained, i.e., simulatively or by sampling the real system). The
mentioned training consists of finding the weights assignment
ω∗ so that:

ω∗ = arg min
ω

J (ω); J (ω) =
N f̂∑
ς=1

[q(ς + 1) − f̂ (I(ς),ω∗)]2.

(2)

The problem (2) is a regular neural regression scheme that tunes
the output of the NN in order to approximate the collected val-
ues of q(ς + 1) as a function of the information vectors I(ς),
ς = 1, . . . , N f̂ . Operatively, once (2) is solved, the resulting
NN may be used to infer new values of q according to new
values of I .

C. Neural Approximation Driven by Effective Bandwidth

QoS control belongs to the well known effective bandwidth
(EfB) framework [6], for which several solutions exist in the lit-
erature. EfB formulas typically return closed-form expressions
of QoS metrics as a function of the service rate and of other traf-
fic parameters. EfB, however, typically exploits the knowledge
of traffic descriptors, which are not included in the information
carried by OF. EfB techniques may be hardly applied with-
out the explicit knowledge of the traffic descriptors ( p). For
the loss metric and through basic statistics (mean and standard
deviation), the well-known EfB formula [7] may be applied:

θ = m + ε1 · σ ; ε1 =
√

−2ln(lE f B) − ln(2π) (3)

lE f B being the EfB loss under the assigned rate θ . An alter-
native to the use of the information vector may be derived as
follows. The first step is inverting (3):

lE f B = e− ε2
2 ; ε2 =

(
θ − m

σ

)2

+ ln(2π) (4)

Since (3) and (4) assume a Gaussian distribution of the input
bit rate and do not exploit the buffer size, the q forecast through
lE f B may be inefficient. Namely, the real loss l may be not per-
fectly aligned with lE f B . Formula (4) may be however exploited
to introduce additional information into I (k). The values of
the parameter δ = lE f B − l at time k and k + 1 are added into
(1) and the target of the regression problem (2), q(k + 1), is
replaced with δ(k + 1). As a result of this, the NN is trained to
predict the error introduced by the EfB formula at time k + 1,
under the current traffic change, in place of directly address-
ing the QoS forecast q(k + 1). The subsequent derivation of
the loss forecast is straightforward from the predicted δ. The
prediction of the error over the heuristic forecast (δ) is prefer-
able than directly addressing the neural approximation of the
performance metric (q). The rationale behind this relies on the
fact that the values of δ may have a smaller variance and less
discontinuities with respect to q.
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D. Information Vectors

The following structures of the information vector are con-
sidered.

Imin(k) = [θ(k), BMax (k), m(k), σ (k), q(k),

m(k + 1), σ (k + 1)] (5)

defining the minimum information available to infer the new
q(k + 1) after the addition of the new flows.

I E f B(k) = [Imin(k), lE f B(k), δ(k), lE f B(k + 1)] (6)

The EfB quantities defined in the previous subsection are added
to Imin(·) to obtain I E f B(·). The inference is first on δ(k + 1)

and then on q(k + 1) through lE f B(k + 1).

I f ull(k) = [I E f B(k), p(k), N (k), N (k + 1)] (7)

All available information is exploited. The inference is again
first on δ(k + 1) because EfB quantities are included in I f ull(·).
The p vector is assumed constant in [k − 1, k + 1] and only the
sample at time k is used. However, nothing prevents to consider
the addition of flows having new traffic descriptors such that
p(k + 1) �= p(k). Despite the N (k), N (k + 1) quantities may
be known in OF, they have been excluded from Imin(·) and
I E f B(·) to stress the working conditions. It is finally worth not-
ing that both Imin(·) and I E f B(·) would be really applicable
in a OF network, while I f ull(·) is considered for performance
comparison only.

IV. PERFORMANCE ANALYSIS

A. Traffic Traces

1) Datacenter: The synthetic generation of data traffic in a
datacenter (DC) is considered because SDN is often used for
DCs. We generate an ON-OFF stochastic process in which ON
and OFF durations along with the inter-arrival duration within
ON periods are random variables that follow the Lognormal
distribution. We select the distributions’ parameters (i.e., loca-
tion μ and scale ξ ) that lead to a cumulative distribution
function (C DF) similar5 to the CDFs of the experimental
traces shown in Figures 6–8 of [8]. The resulting setting is:
μO N = 1, ξO N = 0.5, μO F F = 0.5, ξO F F = 2, and μinter =
0.1, ξinter = 0.5. We verified that different subsets of ON-
OFF flows following those distributions have similar statistical
characteristics 6.

2) Multimedia: The ON-OFF traffic model of multimedia
applications [9] is considered as well. Each source is an ON-
OFF process. Burst and silence durations are exponentially
distributed. For both the traffic models, the traffic buffer is
simulated using an ad-hoc C++ simulator. In virtue of the inde-
pendence of the simulations operated to build the database of
the samples {I(ς); q(ς + 1)} (outlined in subsection III-B),

5Given two cumulative distribution functions CDF1(x), CDF2(x), the
following distance metric should be lower than a given threshold:∫ +∞

0 ‖CDF1(x) − CDF2(x)‖dx .
6This was validated through q-q plot analysis by comparing different sub-

sets with N ∈ [1, 100] and with the ranges on μO N and μinter used in the
simulations.

the processing time can be significantly reduced by using
multiple CPUs.

B. Results

1. Datacenter: Training: The database is built in 6.5
hours over an IntelCore i7-3630QM@2.4GHz, over which 6
simulation threads may run in parallel. The database contains
30000 samples of {I(ς); q(ς + 1)}. The packet size is fixed
to 1500 Byte and NMax ∈ [1, 100] (the maximum number of
connections), BMax ∈ [100, 1100] packets, the μO N and μinter

parameters of the Lognormal distributions are extracted in [0.1,
2] and [0.1, 1], respectively. The vector of traffic descriptors is
therefore p = [μO N , μinter ].

The amount of new flows entering the buffer is set as
follows. At the beginning, the number of active sources is
N = NMax/2 + ν, ν ∈ [1, NMax/3]. The number of sources
abruptly added to the buffer is NMax − N . This implies that
from the 20% of NMax up to the 50% of NMax may constitute
the amount of new flows.

The ranges considered for the variables and the considered
proportion of new flows imply a high variability of system con-
ditions, which may considerably stress the prediction model.
The service rate of the buffer is set according to θ = 2 · NMax

Mbps. The corresponding rate allocations lie in the range [2,
198] Mbps, with an average of 100 Mbps. The measured aver-
age target (i.e., the loss after the addition of new flows) over the
training set is 6%; the average loss before the addition of new
flows is 1%.

A neural network with 20 hidden neural units with hyperbolic
tangent activation function is used for the regression scheme
(2) under all the considered information sets: Imin , I E f B and
I f ull . The training is addressed by the Neural Network Toolbox
in Matlab (version R2014b) by using the Levenberg-Marquardt
algorithm. The database driving the training phase is divided
in 70% of samples for training and 15% for both validation and
test. To avoid overfitting, the minimum number of hidden neural
units is empirically found in correspondence of the minimum
J , defined in (2), over the test set. The corresponding computa-
tional time is approximately 60 s on the same computer if Imin

is used. The other information vectors lead to sensibly lower
computational times because more information simplifies the
training problem.

Test. After training, 10000 new independent repetitions are
generated by extracting the system parameters from a set of
random uniform distributions in the ranges outlined above.
Both in training and test, the reference period T for sampling
the information vector and evaluating the performance lies in
[10, 240] s.

Fig. 1-(a) shows the cumulative frequency7 of the difference
between target (i.e., the real loss, unknown to the predictor) and
predicted loss. The impact of the change of the information
set is appreciable. For example, as highlighted by the dashed
vertical line in the figure, the difference is lower than 5 · 10−3

(i.e., it is a order of magnitude lower than the average target)
with probability 0.91 under I f ull and I E f B and with probability

7It is the relative frequency of events such that the real loss and the estimated
loss differ by a value ≤ x , where x lies in the abscissa of the presented figures.
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Fig. 1. Cumulative frequency of the difference over the target loss (test set).

0.82 under Imin . The gain of I E f B over Imin is significant.
I E f B thus helps overcome the lack of knowledge of the traffic
descriptors.

The impact of T in the information vectors is negligible:
similar curves are obtained by repeating the calculations out-
lined in Fig. 1-(a) without the presence of T in the information
vectors. The following correlation coefficients from Bivariate
Statistics analysis (BSA) [10] are calculated with respect to all
the variables and the target (i.e., q(ς + 1)): Pearson, Spearman
and Kendall tau. The corresponding values with T are around
0, thus denoting the two variables are independent. The highest
correlations, i.e., values of the coefficients close to 1 or -1, are
registered with p and q(ς).

2) Multimedia: The multimedia case follows a large range
of working conditions as well: Bp ∈ [10, 200] kbps (peak
bandwidth of the single source), NMax ∈ [5, 100], β ∈ [1, 6]
(burstiness of the sources); p = [Bp, β]. The buffer size is
variable, too: BMax ∈ [100, 500]. The service rate θ is set
according to θ = Bp · β−1 · NMax . The corresponding alloca-
tions lie in the range [0.01, 14.87] Mbps, with an average of 1.9
Mbps. The other configurations are identical to the DC case,
except for the NN, whose training time is slightly higher than
60 s with Imin . The training database is built in less than 3

hours. The average loss over the test set is 5.6%. As evidenced
by the vertical line in Fig. 1-(b), the difference is lower than
5 · 10−3 with probability 0.87 under I f ull , with probability
0.845 under I E f B and 0.44 under Imin . A further validation
deals with the prediction error with respect to a lower target
loss probability of 1% (after the addition of the new flows).
Fig. 1-(b) does not change qualitatively if we extract from the
test set the losses lying in the range [0, 1%]. For example, the
probability evidenced by the previous numerical example with
Imin (i.e., 0.44) slightly decreases to 0.41. Fig. 1-(b) also evi-
dences the impact of T : the curves using an information vector
deprived of T are denoted with the “. . . ; no T" addition and are
dashed lines. The impact is relevant in this case, as also con-
firmed by BSA that shows high values of correlation of T with
the target. Since BSA may be performed as a pre-processing
step (before NN training), it may be a reliable indication on the
potential advantage of including T in the information vectors.

V. CONCLUSION AND FUTURE WORK

A neural predictor has been developed and tested for loss
estimation in an OpenFlow environment. The reliability and
generality of the approach lead to further investigations in terms
of using other traffic features and QoS metrics.

We also created a real SDN testbed using Open vSwitch and
D-ITG traffic generator. We would like to conduct extensive
testbed measurements in order to investigate what peculiarities
are not captured by simulations and are available through
the platform, such as oscillations, transitions to different
non-stationary states of traffic, congestion control or other
streaming protocol (not easily applicable to a discrete event
simulator) and so on.
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