Support Vector Machine meets Software Defined
Networking in IDS domain

Luca Boero, Mario Marchese, and Sandro Zappatore
Department of Electrical, Electronic and Telecommunications Engineering, and Naval Architecture (DITEN)
University of Genoa
Via all’ Opera Pia 13, 16145 Genoa Italy
Email: luca.boero@edu.unige.it, mario.marchese @unige.it, sandro.zappatore @unige.it

Abstract—Intrusion Detection Systems (IDS) are aimed at
analyzing and detecting security problems. IDS based on anomaly
detection and, in particular, on statistical analysis, inspect
each traffic flow in order to get its statistical characterization,
which represents the fingerprint of the flow. Software Defined
Networking (SDN) is revolutionizing the networking industry
by enabling programmability, easier management and faster
innovation. These benefits are made possible by its centralized
control plane architecture which allows the network to be
programmed and controlled by one central entity. The fusion
of these two technologies can lead to an innovative system of
malware detection. This paper tries to join these two concepts
in order to obtain the best from the two worlds. We use a well
known machine learning scheme (Support Vector Machine) as
core system for detecting malware by using only traffic features
that can be extracted using an SDN controller.

Index Terms—intrusion detection system, malware detection,
software defined networking, machine learning

I. INTRODUCTION

Nowadays a lot of important applications such as public
services, Internet banking, and also systems devoted to defense
are dependent on networks and computers. For this reason they
are often the target of malicious software (malware, spyware,
etc...) attacks. Malware is software specifically designed to
insert itself in a computer system without the approval of the
owner using techniques such as trojans, backdoors, keylogger,
and worms [1]. To prevent these type of attacks it is necessary
to accurately detect malware and other type of intrusions [2].
An Intrusion Detection System (IDS) is a piece of hardware/
software designed to alert when someone or something is
trying or has tried to compromise systems. In general it is
possible to use IDS in order to reveal anomalies and tackle
malicious intrusions. [3] proposes a classififcation of anomaly
detection methods. In particular, concerning the processing
method, [3] suggest: Misuse and Anomaly Detection. The
former tries to fix the abnormal behavior and considers the rest
as normal. The latter describes the normal behavior and marks
as abnormal what is not considered normal. Operatively the
former contains: signature based, rule based, state transition
algorithms, and data mining. The latter includes: statistical,
distance, profile, and model-based schemes. Misuse Detection
(MD) systems, in order to collect signature and information
of the flow under analysis, have to open each packet of the
flow up to the application layer (deep packet inspection). This

type of approach is often very efficient but it has also some
limitations: for example, the signature of an attack can be
dated, or, considering the processing time, to open each single
packet can be computationally heavy. Anomaly Detection,
and, in particular, statistical analysis based ones, which are
taken as a reference in this paper, would like to avoid these
drawbacks also at the cost of a lower accuracy results: packets
are not deeply inspected but each traffic flow is monitored over
time by measuring the statistics of a set of variables (called
features) to distinguish between anomalies (possible malware)
and normal behavior (normal, not infected, traffic).

Software Defined Networking (SDN) [4] [5] is a recent
networking architecture that decouples user and control plane.
In practice SDN separates data and control actions operated
by networking devices such as switches and routers. Data
functions are located within devices, control functions are
concentrated in SDN controllers. The communication between
an SDN controller and the devices under its domain is imple-
mented through a signalling protocol called OpenFlow. This
paper proposes a novel Statistical Analysis SDN-based IDS.
It uses the typical flow definition at TCP/IP (Transfer Control
Protocol/Internet Protocol) layers and is aimed at deciding
whether a flow is malware-affected or not under the framework
of the SDN architecture. It is structured into a training phase
developed by using a ground truth of known flows and an
operative classification and decision phase. Both training and
classification/decision phases are based on the definition and
extraction of a group of statistical parameters related to each
flow, which represent the Statistical Fingerprint of the flow and
on machine learning-based classification devoted to distinguish
normal from malicious traffic.

The paper is organized as follows: Section II contains
the state of the art concerning deep packet inspection MD
and Statistical Analysis-based Anomaly Detection. Section III
describes the differences between an SDN and non-SDN ap-
proach. Section IV contains the proposed architecture. Section
V explains the operative steps to implement the architecture
and shows the results of the proposed approach. Section VI
reports the conclusions.

II. STATE OF THE ART

Table I presents a comparison between deep packet inspec-
tion MD and Statistical Analysis-based AD methods about

complexity, speed ,processing method, and limitations.

TABLE I
MB INTRUSION DETECTION VERSUS SABID SYSTEMS.

Deep Packet
Inspection MD
It examines the

whole packet

content, analysing
data at application
layer looking for

Statistical Analysis
Based AD
It opens packet
headers (e.g. at the IP
and TCP/UDP layers)
to identify flows
and examines traffic

Processing method

signatures/rules statistically
Complexity High Low
Speed Slow Fast
Limitations It cannot detect A training data

new virus or set is involved

encrypted flow

Concerning the family of Misuse Detection, [6] proposes
a host-rule-behavior-based detection method composed of a
clustering engine that groups the objects of a suspicious
program together into a cluster. The authors show that their
results are more satisfying than the ones got by commercial
antivirus software. [7] is a paper whose experimental results
show the detection ability of the system to learn effective
rules from repeated presentations of a tagged training set. [8]
develops an automatic categorization system to automatically
group phishing websites or malware samples by using a
cluster ensemble. [9] and [10] present algorithms based on the
analysis of operational codes (opcodes). An operational code is
part of the machine language dedicated to specify the operation
to be performed. [9] is aimed at individuating a subset of
opcodes suitable for malware detection through SVM (Support
Vector Machine). [10] proposes a method that uses single-
class learning to detect unknown malware families. Among
signature-based approaches: [11] compares the performance of
the intrusion detection systems Suricata and Snort. [12] selects
the possible signatures and uses only a subset of the necessary
ones. [13] classifies packed and polymorphic malware through
a fast application-level emulator.

Considering the systems that use Anomaly Detection (or
also hybrid Statistical Analysis/Misuse Detection): [14] pro-
poses a hybrid IDS combining packet header anomaly detec-
tion (PHAD) and network traffic anomaly detection (NETAD).
[15] describes a two stage architecture to tackle intrusions.
In the first stage a probabilistic classifier is used to detect
potential anomalies in the traffic. In the second stage a HMM
(Hybrid Markov Model) traffic model is used to narrow down
the number of IP addresses carrying the attack. [16] introduces
a hybrid intrusion detection system that combines k-Means and
two classifiers for anomaly detection: K-nearest neighbor and
Naive Bayes. [17] introduces a hybrid detection framework
combining misuse detection, which uses a Random Forest
classification algorithm, and anomaly detection, which exploits
the weighted k-Means scheme.

[18] and [19] are aimed at detecting application-layer tun-
nels, which are the considered anomalies, throughout Statisti-
cal Fingerprints. [18] presents a statistical classification mech-

anism, called Tunnel Hunter, devoted to recognize a generic
application protocol tunneled on top of HTTP or of SSH. [19]
aims to detect DNS tunnels. Another important paper that uses
similar techniques to the one used in this paper, is [20], where
streaming content changes are detected only through traffic
patterns built from the traffic volume achieved by routers.
[21] introduces a scheme for intrusion detection operating in
WEKA. [22] proposes to structure Machine-Learning-based
intrusion detection systems into Artificial Intelligence based
and Computational Intelligence based ones. The former refer
to the methods from domains such as statistical modeling,
whereas the latter include methodologies such as genetic
algorithms, artificial neural network, fuzzy logic, and artificial
immune systems. [23] extracts a long list of features from
the dataset in [24] and compares the performance of different
machine learning classifiers such as DTNB, JRIP, PART, Ridor
for malware detection. [25] uses classifier J48, Random Forest
and Random Tree in the same operating environment by using
the same dataset and list of features presented in [23] and
proposes to use a combination of classifiers to enhance the
performance. [26] introduces a selection of features by using
swarm intelligence algorithms, such as Artificial Bee Colony
(ABC) or Particle Swarm Optimization (PSO), and evaluates
the performance through the same dataset used in [24].

III. SDN vs NON-SDN APPROACH

Our previous work [27] describes the architecture of an
Intrusion Detection System based on Statistical Fingerprint
that is aimed at distinguishing malicious from normal traffic.
The model of the system is based on the TCP/IP architecture,
composed of a flow analyzer and a “filter”. The flow analyzer
checks the IP and TCP/UDP headers of all the flows traversing
the interface in order to gather the necessary features for
each flow. The features used in [27] are reported in Table II.
The “filter takes the features as input and applies a machine
learning technique to the purpose of detecting if the flow is
affected by malware or not.

This paper focuses on the use of the SDN paradigm as
network infrastructure for malware detection. What is the
motivation to have an SDN-based IDS? Software Defined
Networking (SDN) is revolutionizing the networking industry
by enabling programmability, easier management and faster
innovation. These benefits are made possible by its central-
ized control plane architecture, which allows the network to
be programmed by the application and controlled from one
central entity. The SDN architecture is composed of both
switches/routers and a central controller (SDN controller). The
peculiarity of this approach is that it decouples control and
data planes in two separated entities:

o Forwarding element: it is a networking device (i.e.
switch/router) but it is called “switch” in the SDN
paradigm. The only task that is responsible for is the
forwarding of packets inside the network. The switch
processes packets according to rules stored in the flow
tables filled by the controller.

o Controller: it is the brain of the entire network, it has the
role of making decisions about all the flows that traverse
the network, and, consequently, to fill the flow tables
inside each SDN switch under its control.

The two entities communicate in order to exchange informa-
tion and commands suited to manage the entire network. The
protocol standard that makes possible the communication be-
tween the controller and the switches composing the network
is OpenFlow [28]. Embedding a malware detector IDS within
SDN is a clear step forward in the service provided by SDN
and allows simplifying the IDS design being each action left to
the SDN controller. Of course the implementation of malware
detection on SDN presents some issues to investigate. The first
problem to tackle is that the SDN standard does not allow to
get all parameters in Table II. This leads to a reduction of
the features involved for the malware detection. Consequently
we have selected a limited number of features, both to be
compliant to the SDN-OpenFlow standard and also to adapt
to the features that most switches available in the market can
really measure.

The new set of features that can be collected using the SDN
architecture are shown in Table III. As one can note their
number is drastically reduced: starting from 14 in Table II
only 7 features can be used to detect if a flow is affected by
malware or not in the SDN environment.

TABLE I
NON SDN FEATURES FOR EACH FLOW AS STATISTICAL FINGERPRINT.

Features

Description

Num_Pack
Tot_Byte_Flow
Flow_Duration

Number of packets
Number of bytes
Duration of the flow in seconds

Byte_Rate Byte rate

Packet_Rate Packet rate

Delta_Mean Average inter-arrival time of packets

Delta_Std Standard deviation of inter-arrival time

LE “Entropy” of the packet lengths!

DPL Total number of subsets of packets having the
same length divided by the total number of
packets of the flow

First_Len Length of the first packet

Max_Len Length of the longest packet

Min_Len Length of the shortest packet

Mean_Len Average packet length

Std_Len Standard deviation of the packet length

As said, the feature limitation is due to the SDN protocol
and architecture. Only the first packet of a flow, if and
only if there are no rules to forward it, is received by the
controller. For this reason we can extract the length of the
first packet of a flow (First_Len) but we cannot compute the
parameters Delta_Min and Std, LE, DPL, Max_Len, Min_Len
and Std_Len. Referring to Table III: only the Number of
packets, the Number of bytes, and the Duration of the flow
can be directly measured by an SDN Switch and sent to the

ILE is calculated starting from the normalized occurrences of the packet
lengths. Specifically, being L; the number of times a packet has a length
equal to 4, LE is computed as LE = — Z%i%s L logQ(%), where N is
the total number of packets belonging to the flow.

N

TABLE III
SDN FEATURES FOR EACH FLOW AS STATISTICAL FINGERPRINT.

Features
Num_Pack
Tot_Byte_Flow
Flow_Duration

Description

Number of packets

Number of bytes

Duration of the flow in seconds

Byte_Rate Byte rate

Packet_Rate Packet rate

First_Len Length of the first packet
Mean_Len Average packet length

Controller through a suitable message. Byte and Packet rate,
as well as Average packet length may be computed by the
Controller on the basis of the received information.

IV. SYSTEM ARCHITECTURE

The architecture of the entire system is shown in Figure
1. The system is composed of an SDN switch responsible
to route the packets coming from the external interface and
directed to the LAN and vice-versa. Inside the architecture,
thanks to the SDN paradigm, it is possible to implement the
malware detector IDS needed to reveal the malicious traffic.
The main component of the system is the Controller, which
periodically collects traffic statistics, makes computations so
to get the features in Table III and, based on the Malware
Database, applies a configurable machine learning scheme that
classifies the traffic as malware or normal traffic.

SDN Malware

Detector > @

Sys Logger
Flow Analyzer -—l
Filter Builder

g

Malware Database

Controller

External
Interface

Internal

SDN Switch N
&

Malware Detector Interface

Interface

Fig. 1. Architecture of the proposed solution

The system works as described in the following: packets
from the Internet traverse an SDN switch under the control of
the SDN controller. If the switch doesn’t have any rule about
the arrived packet, it sends the packet to the controller which
takes the information related to this packet and computes the
rule needed to route it. After that the controller sends the
rule back to the switch that will be able to forward/manage
the corresponding flow. A flow is defined here by the vector
{Source IP Address, Destination IP Address, Source TCP/
UDP Port, Destination TCP/UDP Port, Protocol} extracted
from the IP, and TCP/UDP headers of the first packet. From
now on the flow is continuously monitored by the switch using
the given rule. The process is repeated for each “first packet”
of any flow.

After a certain time period (called Ty;q;) the controller
sends a feature request packet to the switch in order to
collect all the features of the flows that have traversed the
switch. Once the controller has received the feature reply that
contains, as said, Number of packets, Number of bytes, and
Duration of the flows in [s], it processes this information to
the purpose of extracting the other features: Byte rate, Packet
rate, and Average packet length. The length of the first packet
of the flow is already stored in the Controller. After that the
Controller classifies each flow as malware affected or not.

The module of the Controller responsible of the classifica-
tion of flows is called Flow Analyzer, as reported in Figure 1.
This classification is made by a configurable machine learning
technique. We have chosen the Support Vector Machine [29]
algorithm in this paper. The module loads a previously trained
model of the selected SVM algorithm, receives the statistics
of the traffic traversing the network, and applies the prediction
scheme in order to decide if a particular flow is affected by
malware or not. Through this information the controller can
make decisions on what to do about the flow. For example, it
is possible to immediately stop the flow in order to prevent
possible further infections or to mirror the traffic to a deep
packet inspector to further analyze the flow.

V. EXPERIMENTAL RESULTS

The architecture shown in Figure 1 is used as a reference
for the experimental results. In order to tune and test the Flow
Analyzer we have simulated the behavior of a network in
which there is both malware affected traffic and regular not
affected flows. To this purpose we have mixed traffic from
traces surely containing only malware packets and from ones
containing only normal traffic.

A. Malware Traffic

The malware traffic in this paper is composed of a mix of
different malwares:

AlienspyRat: it belongs to the Remote Access Trojan fam-
ily, i.e. to software uploaded in a network node to fraudulently
take remote control. Once activated this tool allows collecting
system information, updating and downloading other malware,
capturing sound and video without the owner’s consent. Alien-
spyRat exchanges information with the control authorization
server by using SSL: the client creates and configures the
socket, sends system information, and finally listens, waiting
to receive commands from the server.

Cutwail: is a botnet of controlled computers used to carry
out attacks, especially DDoS ones. It is typically installed
through a trojan. Its main purpose is to generate spam emails
by using the contacts in the address book of the machine under
attack. The malware receives instructions from a command and
control server about which and how many messages to send.
After performing this task it sends a full report on the number
of sent messages.

Kuluoz: is a botnet aimed at sending phishing emails that
simulate messages sent by postal administrations or shipments,
combined with the use of social engineering techniques. The

control server is able to send commands to the infected
machines to download and execute pay-per-install programs,
so to ensure gains to the botnet manager.

Purplehaze: is a botnet of advertising category, targeted
to take the control of machines with the aim of using them
to generate many clicks on online advertising sites in order
to remunerate the attacker. It can generate a high volume of
traffic on web sites containing advertisements or links.

Ramnit: is a trojan spearheaded primarily through contacts
with infected removable devices, mainly USB flash memories.
Once installed, this program connects with a remote server
via TCP port 443 and sends all the obtained information of
the infected machine. Examples of stolen data range from
PC name, number of processes, operating system version,
passwords of bank credentials, and also cookies saved by the
web browser.

Thot: this malware is a Trojan that targets Windows ma-
chines in order to open a back door in the system. It allows the
attacker to use the machine without the owner’s authorization.
Once executed, it creates files and folders with random string
names and renames itself in a similar way in order to avoid
being revealed by some defensive tool system like the anti-
virus. Then it is injected into a process and, from this moment
onwards, has access to the resources of the host so to execute
the orders received from the control server.

ZeroAccess: is a Trojan. It has the main purpose to assure
money to the attacker via pay-per-click advertisements. It is
mainly distributed via web and has the task of redirecting
the user to malicious sites specifically created to install the
powerful ZeroAccess rootkit on visitors’ machines. This tool
can create a hidden and encrypted file system where it can save
its members in total freedom, as well as all other additional
malware that can download.

Zeus: is a Trojan with the main purpose of stealing infor-
mation related to the bank accounts of the targets by means
of techniques such as man-in the-browser, keystroke logging
and form grabbing. The spread of the virus occurs mainly
through drive-by downloads initiated by mistake by the user,
or phishing schemes. There is a server that acts as a control
center, run by the attacker, from which the commands start to
be carried out by the Trojan on the infected machine without
alarming the rightful owner.

Asprox: is a spam botnet emerged in 2007. It sends phishing
emails used in conjunction with social engineering lures (e.g.,
booking confirmations, postal-themed spam, etc.). This botnet
arrives as an attachment to spammed messages disguised as
a notification from postal companies as well as an airline
booking confirmation.

Madness: is a distributed denial of service botnet growing
in size and popularity. It infects computers running Windows
with a Portable Executable (PE) bot and communicates with
its command and control server via HTTP by using a client-
server model.

Neris: is a botnet that uses an HTTP based channel to
communicate with the C&C. The main aims of this malware,

after establishing a communication with the C&C, are to send
spam and perform click-fraud through advertisement services.
All the traces we use in this paper can be found in [30]-[33].

B. Normal Traffic

Concerning used normal traffic, we have captured all traffic
in our laboratory. In order to be sure that no malware is
involved, we have configured our laboratory switch so to
forward all the traffic on a specific physical port; we have
connected this port to a pc configured as a virtual switch
that forwards the traffic coming from the ingress line card
to an egress line card connected with the router; and we have
mirrored the traffic to the local port connected to a sniffer.

C. Preliminary Performance Analysis

The first step of performance analysis is the comprehension
of the more relevant features that strongly impact the results
of the machine learning technique. The aim is to check the
relevance of the features available in the SDN environment
and of the complete set in Table II. Different feature ranking
and selection techniques have been proposed in the machine
learning literature. All these approaches have the purpose of
discarding redundant features. In this framework, we consider
the Information Gain (IG).

The evaluation using the IG uses the entropy (1) of a
variable Y

H(Y) == py)log,(p(y)) (1)

yey

where p(y) is the marginal probability density function for the
random variable Y. If the observed values of Y in the training
data set S are partitioned according to the values of a second
feature X and the entropy of Y with respect to the partitions
induced by X is below the entropy of Y before partitioning,
then there is a relationship between the features Y and X. The
entropy of Y after observing X is:

H(Y/X) == p(x)) ply/a)log(p(yx)) (@)

reX yey

where p(y/x) is the conditional probability of y given x.
Considering the entropy as a criterion of impurity in a training
set S, we can define a measure H(Y/X) reflecting the
additional information about Y provided by X. H(Y/X)
represents the decrease of the entropy of Y. The difference
between H(Y) and H(X/Y) is known as IG:

IG=H(Y)-HY/X)=H(X)-HX/Y) @)

The information gained about Y after observing X is equal
to the information gained about X after observing Y.

Using this technique we can investigate the information
brought by each feature and we can rank the features in order
to understand their importance. After an investigation using
a 10 fold cross validation method, the features in Table II
are ranked as shown in Table IV. The ”Average Merit” is the
measure of the importance averaged over the folds of the cross
validation.

TABLE IV
RANKED FEATURES

Average Merit Rank Attribute
0.922 1 First_Len
0.675 2 Max_Len
0.661 3 Min_Len
0.648 4 Tot_Byte_Flow
0.631 5 Delta_Std
0.621 6 Delta_Mean
0.583 7 Num_Pack
0.569 8 Packet_Rate
0.567 9 DPL
0.563 10 Flow_Duration
0.538 11 Byte_Std
0.533 12 Mean_Len
0.505 13 Byte_Rate
0.249 14 LE

The features that the SDN architecture can gather are
evidenced in bold. Their rank is: 1,4, 7, 8,10, 12, and 13. Their
Average Merit is relatively high and so it is reasonable to
proceed with the investigation, checking which is the practical
results of malware detection by using the limited set of features
in Table III with respect to the full set in Table II.

D. Operative Analysis

The Controller extracts the Statistical Fingerprint in Table
IIT from the trace of all the flows and forwards it as input
to the machine learning scheme. The considered classification
technique is the Radial Basis Functions (RBF) SVM [34] that
needs two phases in order to work properly:

1) Training Phase: We define =y as the feature vector
of the f-th flow (its statistical fingerprint). y is the vector
containing the two possible classes of assignation (“malware*
or "normal®). (xs,ys) Vf € [1,F] is the tuple containing
all the information regarding each single flow. F' is the total
number of flows in the training set. SVM is trained building
an hyperplane in order to separate the two considered classes.

SVM performs the classification by using the kernel func-
tion. There are many kernel functions but one of the most
used is the Radial Basis (RBF), chosen for this paper. RBF
uses two different parameters in the training phase: C' (com-
plexity parameter) and v (kernel parameter), set to 20 and 2
respectively, in this paper, after experimental tests.

2) Test Phase: Let Ny be the number of features of each

flow and being F' the total number of flows, the matrix w &€
F' x Ny contains all the feature vectors:
1 4)
The single flow f is associated to the predicted class y- €
y evaluating its position with respect to the previously built
hyperplane by using the matrix w.

w:[m1 I T Tp

E. Classifier Performance

The performance of the classifier has been evaluated by
comparing the results of the classification with the ground
truth on the basis of the following metrics:

o True Positive (TP) - A flow is assigned to the right class.
« False Positive (FP) - A Flow is assigned to the wrong
class.

We performed tests by training the SVM with different per-
centage (33%, and 50%) of training samples extracted from
the dataset. We have tested our scheme with malware type
belonging to the same dataset used for training and with mal-
ware whose type does not belong to the training data in order
to prove the effectiveness and the feasibility of the malware
detector. We have compared the classification algorithm with
all the features reported in Table II and reducing the feature
as reported in Table IIIL.

Table V shows the results obtained through a dataset con-
taining the following malwares: AlienspyRat, Cutwail, Kuluoz,
Purplehaze, Ramnit, Tbot, ZeroAccess, and Zeus; and mixing
this traffic with normal flows. The SVM is trained with 33%
and 50% of the flows in the dataset randomly chosen by using
both all the features reported in Table II and only the SDN
features reported in Table III. The test phase is performed
by using the flows in the dataset not used for the training.
In all considered cases the RBF SVM classifier recognizes
malware traffic with a True Positive Rate above 98%. The
limited set of features in Table III provides approximately
the same performace of the full set of features concerning
this metric. This is not true for normal traffic that is correctly
classified with a rate of about 87% by using the limited set of
features instead of 98% provided by the full set. The opposite
is true for the FP rate that, in the SDN set of features case, is
practically the same of the full set case for normal traffic but
is meaningfully different for malware.

TABLE V
SDN vs FULL SET OF FEATURES
Experiment TP Rate FP Rate Class

.. 0.990 0.015 malware

33% Training, full set of features 0.985 0.010 normal
. . . 0.989 0.011 malware

50% Training, full set of features 0.989 0011 normal
.. 0.984 0.138 malware

33% Training, SDN set of features 0.862 0016 normal
L 0.984 0.124 malware

50% Training, SDN set of features 0876 0016 normal

Finally we have tested our system with malware type
samples different from the ones used for training. The training
set is the same as in Table V: AlienspyRat, Cutwail, Kuluoz,
Purplehaze, Ramnit, Tbot, ZeroAccess, and Zeus. The test set
is composed by flows belonging to Asprox, Madness, and
Neris, Table VI shows the results. The performance are really
satisfying. The malware True Positive rate is over 80% both in
the case of full and SDN features. The two cases are practically
overlapped. The FP rate for malware is 2.7% for the full set
of features and 5.4% for the SDN features. The TP rate for
normal traffic is also quite satisfying: 94.6% for the limited set
of vs 97.3% provided by the full set. The weakness concerns

TABLE VI
RESULTS USING DIFFERENT TEST DATA
Experiment TP Rate FP Rate Class

.. 0,818 0,027 malware
33% Training, full set of features 0.973 0.182 normal

.. . . 0,818 0,027 malware
50% Training, full set of features 0.973 0.182 normal

.. 0,815 0,054 malware
33% Training, SDN set of features 0.946 0.185 normal

. . 0,815 0,054 malware
50% Training, SDN set of features 0.946 0.185 normal

the FP rate for normal traffic: 18.5% both for the SDN and
the full set of features.

VI. CONCLUSIONS

The paper combines the advantage of a Statistical Fin-
gerprint IDS with the potentiality of a Software Defined
Networking (SDN) architecture. In SDN the brain of the
system is decoupled from the nodes that compose the network
and is located in a centralized and well separated entity (the
controller). This entity has the control of the entire network
and can act at higher level coordinating all the network nodes
in order to avoid possible malware intrusions. This approach
can act by using hardware already in the market. The only
requirement is to use the OpenFlow protocol, which is already
standardized and employed in the network environment. The
proposed system acts as follows: network nodes, also called
Switches, are responsible for the collection of the features
needed to infer information from the flows traversing the
network. The Controller contains a configurable machine
learning module that, starting from the features extracted by
switches, completes the number of needed features through
computations and decides if a flow is malware affected or not.
The scheme presented in this paper can lead to an innovative
solution aimed at stopping the proliferation of malware inside
the network. Using SDN implies a reduction of the number of
features that can be practically used to detect malware. The
shown performances evaluation shows that the performance by
using this limited set of features is still satisfying. In particular
the detection of not trained malware is above 80% while the
detection of normal traffic is about 95%. False positive rate is
quite low for malware (5.4%) but needs to be improved for
normal traffic (18.5%).

REFERENCES

[1]1 Y. Ye, T. Li, Q. Jiang, and Y. Wang, “Cimds: adapting postprocessing
techniques of associative classification for malware detection,” Systems,
Man, and Cybernetics, Part C: Applications and Reviews, IEEE Trans-
actions on, vol. 40, no. 3, pp. 298-307, 2010.

[2] V. G. Cerf, “Defense against the dark arts,” Internet Computing, IEEE,
vol. 16, no. 1, pp. 96-96, 2012.

[3] F. Sabahi and A. Movaghar, “Intrusion detection: A survey,” in Systems
and Networks Communications, 2008. ICSNC’08. 3rd International
Conference on. 1EEE, 2008, pp. 23-26.

[4] W. Stallings, “Software-defined networks and openflow,” The internet
protocol Journal, vol. 16, no. 1, pp. 2-14, 2013.

(5]

(6]

(71

(8]

(91

[10]

[11]

[12]

[13]

[14]

[15]

[16]

(17]

(18]

[19]

[20]

[21]

[22]

[23]

[24]

B. A. A. Nunes, M. Mendonca, X. N. Nguyen, K. Obraczka, and
T. Turletti, “A survey of software-defined networking: Past, present,
and future of programmable networks,” IEEE Communications Surveys
Tutorials, vol. 16, no. 3, pp. 1617-1634, Third 2014.

Z. Shan and X. Wang, “Growing grapes in your computer to defend
against malware,” Information Forensics and Security, IEEE Transac-
tions on, vol. 9, no. 2, pp. 196-207, 2014.

J. J. Blount, D. R. Tauritz, and S. A. Mulder, “Adaptive rule-based
malware detection employing learning classifier systems: a proof of
concept,” in Computer Software and Applications Conference Workshops
(COMPSACW), 2011 IEEE 35th Annual. 1EEE, 2011, pp. 110-115.
W. Zhuang, Y. Ye, Y. Chen, and T. Li, “Ensemble clustering for
internet security applications,” Systems, Man, and Cybernetics, Part C:
Applications and Reviews, IEEE Transactions on, vol. 42, no. 6, pp.
1784-1796, 2012.

P. O’Kane, S. Sezer, K. McLaughlin, and E. G. Im, “Svm training
phase reduction using dataset feature filtering for malware detection,”
Information Forensics and Security, IEEE Transactions on, vol. 8, no. 3,
pp. 500-509, 2013.

I. Santos, F. Brezo, B. Sanz, C. Laorden, and P. G. Bringas, “Using
opcode sequences in single-class learning to detect unknown malware,”
Information Security, IET, vol. 5, no. 4, pp. 220-227, 2011.

A. Alhomoud, R. Munir, J. P. Disso, I. Awan, and A. Al-Dhelaan,
“Performance evaluation study of intrusion detection systems,”
Procedia Computer Science, vol. 5, pp. 173 — 180, 2011, the
2nd International Conference on Ambient Systems, Networks and
Technologies (ANT-2011) / The 8th International Conference on
Mobile Web Information Systems (MobiWIS 2011). [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S1877050911003498

S. K. Cha, I. Moraru, J. Jang, J. Truelove, D. Brumley, and D. G. An-
dersen, “Splitscreen: Enabling efficient, distributed malware detection,”
Communications and Networks, Journal of, vol. 13, no. 2, pp. 187-200,
2011.

S. Cesare, Y. Xiang, and W. Zhou, “Malwise - an effective and
efficient classification system for packed and polymorphic malware,”
IEEE Transactions on Computers, vol. 62, no. 6, pp. 1193-1206, June
2013.

M. A. Aydin, A. H. Zaim, and K. G. Ceylan, “A hybrid intrusion
detection system design for computer network security,” Computers &
Electrical Engineering, vol. 35, no. 3, pp. 517-526, 2009.

R. R. Karthick, V. P. Hattiwale, and B. Ravindran, “Adaptive network
intrusion detection system using a hybrid approach,” in Communication
Systems and Networks (COMSNETS), 2012 Fourth International Con-
ference on. IEEE, 2012, pp. 1-7.

H. Om and A. Kundu, “A hybrid system for reducing the false alarm
rate of anomaly intrusion detection system,” in Recent Advances in
Information Technology (RAIT), 2012 1st International Conference on.
IEEE, 2012, pp. 131-136.

R. M. Elbasiony, E. A. Sallam, T. E. Eltobely, and M. M. Fahmy, “A
hybrid network intrusion detection framework based on random forests
and weighted k-means,” Ain Shams Engineering Journal, vol. 4, no. 4,
pp. 753-762, 2013.

M. Dusi, M. Crotti, F. Gringoli, and L. Salgarelli, “Tunnel hunter:
Detecting application-layer tunnels with statistical fingerprinting,” Com-
puter Networks, vol. 53, no. 1, pp. 81-97, 2009.

M. Aiello, M. Mongelli, and G. Papaleo, “Dns tunneling detection
through statistical fingerprints of protocol messages and machine learn-
ing,” International Journal of Communication Systems, vol. 28, no. 14,
pp. 1987-2002, 2015.

H. Nakayama, A. Jamalipour, and N. Kato, “Network-based traitor-
tracing technique using traffic pattern,” IEEE Transactions on Informa-
tion Forensics and Security, vol. 5, no. 2, pp. 300-313, June 2010.

M. N. Mohammad, N. Sulaiman, and O. A. Muhsin, “A novel intrusion
detection system by using intelligent data mining in weka environment,”
Procedia Computer Science, vol. 3, pp. 1237-1242, 2011.

M. Zamani and M. Movahedi, “Machine learning techniques for intru-
sion detection,” arXiv preprint arXiv:1312.2177, 2013.

G. V. Nadiammai and M. Hemalatha, “Perspective analysis of machine
learning algorithms for detecting network intrusions,” in Computing
Communication Networking Technologies (ICCCNT), 2012 Third Inter-
national Conference on, July 2012, pp. 1-7.

“Kdd cup 1999 data,” http://kdd.ics.uci.edu/databases/kddcup99/
kddcup99.html, 2016.

[25]

[26]

[27]

(28]

[29]

[30]
[31]
[32]
(33]

[34]

S. Saravanan, S. Vijay Bhanu, and R. Chandrasekaran, “Study on
classification algorithms for network intrusion systems,” Journal of
Communication and Computer, vol. 9, no. 11, pp. 1242-1246, 2012.
A. C. Enache and V. V. Patriciu, “Intrusions detection based on sup-
port vector machine optimized with swarm intelligence,” in Applied
Computational Intelligence and Informatics (SACI), 2014 IEEE 9th
International Symposium on, May 2014, pp. 153-158.

L. Boero, M. Cello, M. Marchese, E. Mariconti, T. Naqash, and S. Zap-
patore, “Statistical Fingerprint - Based Intrusion Detection System (SF-
IDS),” International Journal of Communication Systems, 2016, accepted
for Publication.

“Openflow switch specification - version 1.4.0,” https://goo.gl/
GEXWQc, Open Networking Foundation, October 14, 2013, last view
at October, 2016.

C.-C. Chang and C.-J. Lin, “LIBSVM: A library for support vector
machines,” ACM Transactions on Intelligent Systems and Technology,
vol. 2, pp. 27:1-27:27, 2011, software available at http://www.csie.ntu.
edu.tw/~cjlin/libsvm.

Available on line http://www.malware-traffic-analysis.net, last visit
March 2017.

Available on line http://contagiodump.blogspot.it, last visit March 2017.
Available on line http://www.pcapanalysis.com, last visit March 2017.
Available on line at: www.mediafire.com/?a491965nlayad, last visit
March 2017.

R. K. Dash, “Selection of the best classifier from different datasets
using weka,” in International Journal of Engineering Research and
Technology, vol. 2, no. 3 (March-2013). ESRSA Publications, 2013.

