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Abstract—Nowadays many systems and applications require 
the  identification of  traffic classes,  which  must  be  compliant 
to specific pre-defined constraints. Traditional networking ap- 
proaches are based on traffic shaping, which is used to force the 
traffic to comply to the service agreements. This task is usually 
demanded to the underlying devices and this choice causes limited 
flexibility since the network functionalities are strictly dependant 
on the specific hardware. In this paper we propose a solution 
based on SDN, which implements a software strategy to cope with 
non-conformant traffic flows inside a class-based system. This 
approach is therefore independent of the underlying hardware, 
as it is conceived to run as an algorithm inside the SDN controller. 
The proposed strategy will manage non-conformant flows, based 
on a set of statistic data gathered by a modified version of the 
Beacon controller, in order to limit the quality degradation of 
flows traversing the network. 

Index Terms—SDN, OpenFlow, Packet Loss, Traffic Engineer- 
ing 

 
I.  INTRODUCTION 

 

Many applications nowadays rely on Quality of Service 
(QoS) guarantees. Some of them are telemedicine, tele-control 
(remote control of robots in hazardous environments, remote 
sensors and systems for tele-manipulation), tele-learning, tele- 
phony, video-conferences, online gaming, multimedia stream- 
ing and applications for emergencies and security. Each appli- 
cation, having very different characteristics, needs a specific 
degree of service, defined at the application layer. 

Concerning the network viewpoint, QoS is the ability of 
a network element to have some level of assurance that its 
traffic and service requirements can be satisfied. QoS manages 
bandwidth according to application demands and network 
management settings [14]. The term QoS is used in different 
meanings, ranging from the users’ perception of the service to 
a set of connection parameters necessary to achieve particular 
service quality. The QoS meaning changes depending on the 
application field and on the scientific scope. Three types of 
Quality of Service have been defined, based on the main aspect 
we focus on: Intrinsic, Perceived and Assessed QoS. Currently, 
most of the QoS provision is offered in terms of intrinsic QoS 
(objective parameters) by using a Service Level Specification 
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(SLS) which is a set of parameters and their values which 
together define the service offered to a traffic [9]. 

QoS management techniques are required in order to offer 
the necessary tools to guarantee specific QoS requirements. 
Traditional approaches to QoS management range from the 
simple Over Provisioning, consisting of purchasing an over- 
supply of bandwidth to solve the challenges, to the Traffic 
Control, in which shaping policies limit flows to their commit- 
ted rates in order for the flows to be conform with their traffic 
descriptor. Other techniques involve Call Admission Control 
[6],  [7],  Scheduling,  and  Flow  Control.  Shaping  policies, 
for  example, limit  flows to  their  committed rates  in  order 
for the flows to be conform with their traffic descriptors. If 
connections exceed their bandwidth consumption specifica- 
tions, the network, which has dimensioned resources in strict 
dependence on the declarations, cannot guarantee any specified 
QoS requirement. Two common methods used in literature to 
shape traffic are Leaky Bucket and Token Bucket [16], but 
they are strictly related to the hardware implementation. 

In  the traditional approach to  networking, most network 
functionality is implemented in a dedicated appliance such 
as switch, router, application delivery controller. In addition, 
within the dedicated appliance, most of the functionality is 
implemented in dedicated hardware such as an Application 
Specific Integrated Circuit (ASIC). This kind of approach is 
characterized by  slow  evolution of  network functionalities, 
which are by the way under the control of the provider of 
the device. The widespread adoption of server virtualization 
and the consequent need to move virtual machines dynamically 
between servers lead to increasing pressure for network organi- 
zations to be more efficient and agile in network management. 

As the traditional networking paradigm has a rather static 
nature, the  necessity for  a  new software-oriented approach 
started  to  arise.  One  of  the  main  solutions  that  fulfil the 
aforementioned need, is Software Defined Networking (SDN). 
The main opportunities that SDN can address are the support 
of dynamic movement and allocation of network resources, 
the scalability of network functionalities and the reduction of 
network complexity. Software Defined Networking allows also 



to perform traffic engineering with an end-to-end view of the
network and to apply more effective security functionalities
[15]. The SDN architecture has the aim of leaving the intelli-
gence outside the data plane, in order to make the mechanisms
simpler and quicker. The control program can therefore be
implemented inside a supervising SDN controller, which can
interact with the network switches using the forwarding model,
whose main implementation is the OpenFlow Protocol [2].

Current OpenFlow (OF) specification does not provide di-
rect support to Quality of Service: in fact there is no possibility
to change queue rates through specific OpenFlow directives
and this task is therefore demanded to an external dedicated
tool [2]. The necessity to be able to modify the service
rate of the queues arises in case of flows whose rate grows
unpredictably. This effect may cause a severe congestion inside
a SDN node, thus affecting the overall quality experienced by
flows traversing the network.

It is possible to overcome this problem by re-routing the
flows which are not compliant with the a-priori constraints.
Since we cannot change the service rate of the queues, our
solution is based on the efficient management of the ingress
flows in a queue. Since we want to devise a solution which
is compatible with any underlying hardware, we set ourself
the goal of keeping the OpenFlow directives unchanged and
therefore we design and implement the strategy inside the
SDN controller. Thus we propose a specific solution imple-
mented in Beacon [8], a widely used SDN controller. Our
new updated controller, BeaQoS, will receive queues, flows
ans ports statistics from OF switches and will compute an
estimation of the rates of the flows traversing the network
and the packet losses of the queues. Based on customizable
policies, the controller will be able to select a subset of flows
experiencing congestion and re-route them on another and less
congested queue, improving the QoS.

The remainder of this paper is structured as follow: Section
II describes related works on this field. Then, concerning the
main contributions of this paper:

- we explain the motivations that lead to the use of multiple
queues to support Quality of Service and describe the
underlying idea of our proposal (Section III);

- we describe the modifications of BeaQoS controller and
we propose specific strategies in order to avoid quality
degradation (Section V);

Section V shows a performance analysis of our proposed
solution. Finally a discussion about the obtained results and
the conclusions are drawn in Section VI.

II. RELATED WORKS

Despite traffic engineering (TE) approaches are often ruled
by MPLS-TE [4], [5], the ability of the SDN controller to
receive (soft) real-time information from SDN devices and to
make decisions based on a global view of the network, coupled
with the ability of “custom”-grained flow aggregation inside
SDN devices, makes TE one of the most interesting use cases
for SDN networks.

Global load balancing algorithms are proposed in [11],
which addresses load-balancing as an integral component of
large cloud services. Authors explore ways to make load-
balancing scalable, dynamic, and flexible. Moreover they state
that load-balancing should be a network primitive, not an
add-on. Therefore, they present a prototype distributed load-
balancer they built based on this principle.

In [17], authors show that the controller should exploit
switch support for wildcard rules for a more scalable solution
that directs large aggregates of client traffic to server replicas.
They also present algorithms that compute concise wildcard
rules that achieve a target distribution of the traffic, and
automatically adjust to changes in load-balancing policies
without disrupting existing connections. Furthermore, authors
implement these algorithms on top of the NOX OpenFlow
controller, evaluate their effectiveness, and propose several
avenues for further research.

The work presented in [12] shows a system that re-
configures the network’s data plane to match current traffic
demand by centrally controlling when and how much traffic
each service sends on a backbone connecting data-centres.
They develop a novel technique that leverages a small amount
of scratch capacity on links to apply updates in a provably
congestion free manner, without making any assumptions
about the order and timing of updates at individual switches.
Further, to scale to large networks in the face of limited
forwarding table capacity, their system greedily selects a small
set of entries that can satisfy current demand. It updates this
set without disrupting traffic by leveraging a small amount of
scratch capacity in forwarding tables.
Reference [3] analyses a partially deployed SDN network (a
mix of SDN and no-SDN devices) and shows how to leverage
the centralized controller to get significant improvements in
network utilization as well as to reduce packet losses and
delays. They show that these improvements are possible even
in cases where there is only a partial deployment of SDN
capability in a network. The authors formulate the SDN
controller’s optimization problem for traffic engineering with
partial deployment and develop fast Fully Polynomial Time
Approximation Schemes (FPTAS) for solving these problems.

This last problem is also tackled in [10] that introduces
a traffic management method to divide, or “slice”, network
resources to match user requirements. The authors present
an alternative to traditional resorting to low-level mechanisms
such as Virtual LANs, or interposing complicated hypervisors
into the control plane: they introduce an abstraction that
supports programming isolated slices of the network. The
semantics of slices ensures that the processing of packets on
a slice is independent of all other slices. They define their
slice abstraction, develop algorithms for compiling slices, and
illustrate their use on examples. In addition, the authors de-
scribe a prototype implementation and a tool for automatically
verifying formal isolation properties.



III. MOTIVATIONS

Most of the QoS approaches cited above suppose the
capability of OpenFlow to set the service rate of the queues
inside a network node. In some cases, instead, only one queue
per interface is considered.

Unfortunately, current OpenFlow specification does not in-
clude the ability for the protocol to configure the service rate
of the queues and thus an external dedicated tool must take
care of this task. The impossibility to set the suitable rate for
the queues can lead to severe congestion, causing performance
degradation of the quality experienced by the flows. The
optimal solution would certainly be the introduction of a
custom OpenFlow directive, allowing the user to dynamically
change the service rate of the queues. This approach would
be, on the other side, totally incompatible with the current
OpenFlow hardware.

In order to describe the main idea behind our proposal,
suppose that there are two queues inside the system, each
dedicated to a specific type of traffic. The first queue is
assigned to low rate flows, while the second one is dedicated to
high rate traffic. If a flow traversing q0, previously identified as
a low rate type, suddenly increases its rate, the queue will start
to grow and it could end up losing packets. The performance
of the other flows traversing the queue will be affected by this
event, both in terms of delay and packet loss.
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Figure 1. All traffic is conformant.
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Figure 2. Some of low-rate flows
become non conformant.

We therefore propose a strategy that limits this effect,
ensuring that flows that prove to be compliant with the QoS
constraints can exploit the needed bandwidth without suffering
from any performance degradation. This solution has the task
to identify the traffic which is not conformant to the rate
constraints and re-route it (or drop it, if needed), in order
to avoid the degradation of the quality experienced by other
flows traversing the network.
Since we want to devise a solution which is compatible
with any underlying hardware, we design and implement
the strategy inside the SDN controller. Although the simple
idea, the design of the re-routing mechanism involves several
functionalities of the SDN controller. In particular, the design
involves the following features:

- no primitives shall be modified with respect to the current
OpenFlow standard;

- the compatibility with early versions of OpenFlow is
obviously a must;

- a creation of a module able to handle statistics;
- the implementation of the proposed solution.

IV. SOLUTIONS AND BEACON MODIFICATION

We chose Beacon [8] as SDN controller. Beacon is a multi-
threaded Java-based controller that relies on OSGi and Spring
frameworks and it is highly integrated into the Eclipse IDE. In
spite of a specific choice of the controller, our modifications
can be implemented in any controller.

The structure of the controller consists of several bundles
with dedicated functionalities. The main bundle we focused
on for modifications is the Routing one, which takes care of
finding the correct path between source and destination for
packet forwarding. Moreover, we created an ad-hoc bundle,
called Statistics, to the purpose of collecting and processing
the statistics reply messages provided by the network switches.
We called this new version of the Beacon software BeaQoS.

The scenario in which we present our solution involves a
class-based system in which flows are identified by traffic
descriptors. The issue we want to investigate deals with a flow
characterized by a specific rate limit, which, for some reason,
violates this constraint. At this point our system recognizes the
problem and then it re-routes the flow in a more suitable queue,
in order to avoid traffic congestion and quality degradation.
We suppose two main types of traffic:

• Low-Rate (LR) - characterized by a rate not exceeding
100 kbit/s

• High-Rate (HR) - displaying a rate greater than
100 kbit/s, most of the time

Our strategy routes the flows using their traffic descriptors.
Two queues are configured inside the switch interface: one is
dedicated to LR traffic, whereas the other is devoted to HR
flows.
If a flow labelled as LR suddenly increases its rate so as it
overcomes a specific threshold (Rate > Limit 0), the queue
could become more and more congested and it would start
losing packets. Our system is able to recognize the constraint
violation and take actions in order to avoid possible conges-
tion.
The implemented strategy can select the flow which is not
compliant to the traffic descriptor and re-route it to the suitable
queue (Assign to queue Q1). Moreover, if the queue related to
HR flows cannot handle the newly re-routed flow (if LR &&
Rate > Limit 1), the controller will understand this situation
through a simple computation and it will decide to drop the
flow.

We introduce and implement a solution, that will be called
Conformant, illustrated in Figure 3, to the purpose of re-
establishing the correct routing of flows, based on their rates.
This scheme assigns incoming flows to the queue associated
to a specific traffic descriptor. q0 is dedicated to process low-
rate flows, whereas q1 is devoted to serve high-rate traffic. The



Routing module of BeaQoS decides the correct queue based
on the Type of Service field 1.

Figure 3. Strategy Flowchart

In order to implement this strategy, we modified the routing
module of the Beacon controller, adding the following snippet
of code:
if (stats.getRouting().equals("CONFORM") && (stats.

getSwitchList().get(switchIndex).getPorts().get(
portIndex).getQueues().size()) != 0)

{
switch(match.getNetworkTypeOfService())
{

case 0x04:
queue = 1;
break;

default:
queue = 0;
break;

}
}

Furthermore, the controller periodically checks the statistics
related to the flows belonging to q0 in order to figure out if a
flow is not compliant to its constraint. When BeaQoS finds a
flow which is violating its traffic descriptor, it re-routes it to
the HR queue in order to be able to serve the traffic without
causing congestion. If the newly re-routed flow overcomes a
pre-defined threshold while traversing q1, this traffic will be
dropped by the BeaQoS controller. In the present simulation
we set this threshold to 700 kbit/s. We implemented this

1We choose the ToS field to differentiate LR and HR flows, but other
solutions can be implemented.

part of the strategy inside a specific BeaQoS module aimed at
collecting statistic data. The code used to generate the desired
behaviour is the following:
if (MODE.equals("CONFORM"))
{

for (int g=0; g < switchList.get(switchIndex).
getPorts().get(portIndex).getFlows().size();
g++)

{
if (switchList.get(switchIndex).getPorts().

get(portIndex).getFlows().get(g).getQID
() == 0)

{
if (switchList.get(switchIndex).getPorts

().get(portIndex).getFlows().get(g).
getLastRate()

> LIMIT0)
{

OFMatch match = buildMatch(
switchList.get(switchIndex).
getPorts().get(portIndex).
getFlows().get(g));

switchList.get(switchIndex).getPorts
().get(portIndex).getFlows().get
(g).setQID(1);

sendFlowMod(sw, match,(short) (
switchList.get(switchIndex).
getPorts().get(portIndex).getPId
()), 1);

}
}

else if (switchList.get(switchIndex).
getPorts().get(portIndex).getFlows().get
(g).getQID() == 1)

{
if ((switchList.get(switchIndex).

getPorts().get(portIndex).getFlows()
.get(g).getLastRate()

> LIMIT1) && (switchList.get(
switchIndex).getPorts().get(
portIndex).getFlows().get(g)
.getTos() == (byte) 0))

{
OFMatch match = buildMatch(

switchList.get(switchIndex).
getPorts().get(portIndex).
getFlows().get(g));

dropFlow(sw, match,(short) (
switchList.get(switchIndex).
getPorts().get(portIndex).getPId
()), 1);

}
}

}
}

V. PERFORMANCE ANALYSIS

We ran the performance analysis on a PC with Mininet
(version 2.1.0) [13]. The scenario is composed of two hosts
connected to a SDN switch. The chosen implementation of
the switch is Open vSwitch 2.0.2 [1], managed by an instance
of BeaQoS running on the same machine. Each port of the
switch is configured with two queues, q0 and q1. We tested
our strategy with two sets of simulations, one involving 50
flows and the other characterized by 100 flows inside the
network. The rate assigned to each queue is shown in Table I
for the 50 flows scenario (Simulation 1), and in Table II for
what concerns the 100 flows simulation (Simulation 2). Queue
service rates are set through the Traffic Control (tc) module
in Linux Kernel.

The traffic used for this simulations was generated through
the iperf tool and it consisted of 40% of LR flows and 40% of
HR flows. We also introduce 20% of LR flows not respecting



Queue ID Service Rate Buffer Size Traffic Descriptor

0 4 Mbit/s 1000 packets LR
1 16 Mbit/s 1000 packets HR

Table I
QUEUE CONFIGURATION FOR SIMULATION 1

Queue ID Service Rate Buffer Size Traffic Descriptor

0 8 Mbit/s 1000 packets LR
1 32 Mbit/s 1000 packets HR

Table II
QUEUE CONFIGURATION FOR SIMULATION 2

their traffic descriptors, called Non-Conformant (NC), in order
to test our strategy. Flow types and their rates are shown in
Table III.

Traffic Descriptor Rate Percentage

Low Rate 40− 60 kbit/s 40%
High Rate 200− 800 kbit/s 40%
Non-Conformant 200− 800 kbit/s 20%

Table III
FLOW DESCRIPTION FOR THE SIMULATIONS

This test aim at comparing the performances of our al-
gorithm Conformant (as described in Section IV) with the
Dedicated strategy. This last scheme consists in assigning each
traffic class to the corresponding queue based on the traffic
descriptor upon flow arrival and then take no further actions
independently of the flow behaviour.

The results of our first set of simulations show that, while
the dedicated scheme produces a 6.8% packet loss, the pro-
posed strategy allows to completely avoid the packet loss of
Low Rate flows (Figure 4). This benefit is obtained together
with the fact that the quality experienced by High Rate flows
is not affected. It is worth to notice that the loss of Non-
Conformant flows increases, but this is acceptable since these
flows are not compliant with the constraints. This effect is
shown in Figure 5.
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Figure 4. Packet Loss for Low Rate Flows

The second set of simulations confirm the same behaviour as
the previous scenario. Packet loss for the dedicated approach
shows an average value of 1.8%, whereas the Conform strategy

is able to bring this value down to zero (Figure 4). Also in
this case the packet loss of Non-Conformant flows increases
(Figure 5).
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Figure 5. Packet Loss for Non Conformant Flows

Being our proposal a programmable solution, it is however
possible to tune the threshold that defines the behaviour of the
strategy in order to cope with different needs and situations.
This parameter can be set through an external properties file,
making the customization of the scheme even more flexible.

VI. CONCLUSION

In this work we analysed and explained the most important
benefits and improvements that SDN architecture provided
to traditional networking approaches. The main innovation
brought by SDN is the decoupling of control plane and data
plane.

Due to the lack of flexibility in QoS management of
OpenFlow, we decided to propose new approaches to manage
the non-conformant flows inside a SDN network exploiting the
re-routing principle. We explained the topical modifications
applied to the Beacon controller in order to implement specific
strategies.

In conclusion, we showed the results obtained in per-
formance tests in which we compared the alternative QoS
approaches. Our cases of study show that the proposed QoS
solutions allow to gain good results when applied to the current
OpenFlow environment.

Future developments could consist in testing the network
environment with a larger amount of traffic in order to test the
scalability of our solutions. We also plan to devise alternative
approaches such as exploiting the low rate queue in order to
improve the quality perceived by high rate flows. Furthermore
we plan to run our algorithms in other scenarios setted with
different queue configurations. Finally we hope to be able
to conduct testbed measurements with commodity hardware
routers in order to avoid the problems related to the software
emulation of this type of devices.
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